Learn Deep Learning with Yann LeCun

claire.tu
Posted on Feb 3, 2016

Speaker: Yann LeCun, Facebook AI Research & New York University

Introduction: Deep Learning has revolutionized computer vision and speech recognition, and is well on its way to profoundly transform natural language understanding. The main advantage of deep learning is that it automates the process of designing good features for a machine learning system. In this meetup Yann reviews the basic ideas and methods of deep learning and describes a number of large-scale practical applications in image understanding and natural language understanding. Beyond traditional ML applications, the long-term goal of deep learning is to enable progress towards AI systems. Yann also talks about some of the challenges on the path to AI.

Bio of speaker:

Yann LeCun is Director of AI Research at Facebook, and Silver Professor of Data Science, Computer Science, Neural Science, and Electrical Engineering at New York University, affiliated with the NYU Center for Data Science, the Courant Institute of Mathematical Science, the Center for Neural Science, and the Electrical and Computer Engineering Department.

He received the Electrical Engineer Diploma from Ecole Supérieure d'Ingénieurs en Electrotechnique et Electronique (ESIEE), Paris in 1983, and a PhD in Computer Science from Université Pierre et Marie Curie (Paris) in 1987. After a postdoc at the University of Toronto, he joined AT&T Bell Laboratories in Holmdel, NJ in 1988. He became head of the Image Processing Research Department at AT&T Labs-Research in 1996, and joined NYU as a professor in 2003, after a brief period as a Fellow of the NEC Research Institute in Princeton. From 2012 to 2014 he directed NYU's initiative in data science and became the founding director of the NYU Center for Data Science. He was named Director of AI Research at Facebook in late 2013 and retains a part-time position on the NYU faculty.

His current interests include AI, machine learning, computer perception, mobile robotics, and computational neuroscience. He has published over 180 technical papers and book chapters on these topics as well as on neural networks, handwriting recognition, image processing and compression, and on dedicated circuits and architectures for computer perception. The character recognition technology he developed at Bell Labs is used by several banks around the world to read checks and was reading between 10 and 20% of all the checks in the US in the early 2000s. His image compression technology, called DjVu, is used by hundreds of web sites and publishers and millions of users to access scanned documents on the Web. Since the mid 1980's he has been working on deep learning methods, particularly the convolutional network model, which is the basis of many products and services deployed by companies such as Facebook, Google, Microsoft, Baidu, IBM, NEC, AT&T and others for image and video understanding, document recognition, human-computer interaction, and speech recognition.

LeCun has been on the editorial board of IJCV, IEEE PAMI, and IEEE Trans. Neural Networks, was program chair of CVPR'06, and is chair of ICLR 2013 and 2014. He is on the science advisory board of Institute for Pure and Applied Mathematics, and Neural Computation and Adaptive Perception Program of the Canadian Institute for Advanced Research. He has advised many large and small companies about machine learning technology, including several startups he co-founded. He is the lead faculty at NYU for the Moore-Sloan Data Science Environment, a $36M initiative in collaboration with UC Berkeley and University of Washington to develop data-driven methods in the sciences. He is the recipient of the 2014 IEEE Neural Network Pioneer Award.

About Author

Leave a Comment

No comments found.

View Posts by Categories


Our Recent Popular Posts


View Posts by Tags

#python #trainwithnycdsa 2019 airbnb Alex Baransky alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus API Application artist aws beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep Bundles California Cancer Research capstone Career Career Day citibike clustering Coding Course Demo Course Report D3.js data Data Analyst data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization Deep Learning Demo Day Discount dplyr employer networking feature engineering Finance Financial Data Science Flask gbm Get Hired ggplot2 googleVis Hadoop higgs boson Hiring hiring partner events Hiring Partners Industry Experts Instructor Blog Instructor Interview Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter lasso regression Lead Data Scienctist Lead Data Scientist leaflet linear regression Logistic Regression machine learning Maps matplotlib Medical Research Meet the team meetup Networking neural network Neural networks New Courses nlp NYC NYC Data Science nyc data science academy NYC Open Data NYCDSA NYCDSA Alumni Online Online Bootcamp Open Data painter pandas Part-time Portfolio Development prediction Prework Programming PwC python python machine learning python scrapy python web scraping python webscraping Python Workshop R R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn Selenium sentiment analysis Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau team TensorFlow Testimonial tf-idf Top Data Science Bootcamp twitter visualization web scraping Weekend Course What to expect word cloud word2vec XGBoost yelp