Anime Reviews and Scores

Posted on Nov 21, 2016

Anime, the abbreviated pronunciation of "animation" in Japanese, refers to animation from Japan. Its style is often characterized by colorful graphics, vibrant characters, and fantastical themes[1]. As someone who watched lots of anime growing up, I turned my sight to the largest anime and manga database and community -

Web Scraping:

The website is scraped with Scrapy, a web crawling framework written in python. Contents from different pages were scraped, including information about 89,244 reviews, 5,953 anime and 3,550 directors, voice actors, and musicians.


Contents Scraped from web pages on anime review, information about the anime and the staff/cast.

Exploratory Data Analysis: was founded in Nov 2006; its number of users keeps growing and so is the number of the reviews. As of September 2016, over 2000 new reviews are posted online per month.

The most reviewed anime on the website is "Sword Art Online", an adaption of a 2009 Japanese light novel series. The series takes place in the near future and focuses on various virtual reality MMORPG worlds. The figure above shows the number of reviews posted  through time. It is interesting that the spikes on the curve coincide with the air dates of the anime and its sequels: its premiere in summer 2012, the first season finale in Dec 2012, a short movie sequel in Dec 2013 and a second season starting summer 2014, even the recent news about season 3 and a new movie project.


The box plot above illustrates how the scores of anime differ by their type of production. The anime produced as TV series or Movie tend to have better scores than the ones produced as OVA ("Original Video Animation", i.e, direct-to-DVD), music videos, and special (short films, commercials, etc.). The anime produced as ONA ("Original Network Animation", i.e, through video streaming websites) usually has lower scores than other types.



The box plot above the differences in scores between different ratings. Unlike comics in the US, the topics of anime are much broader and therefore it has ratings more analogous to TV and Movie. The highest scored anime often has "R - 17+" or "PG -13" ratings.


The network graph depicts the connection among randomly-selected 100 anime from the 5953 anime in the data set. Each node represent an anime colored by its type. The size of the nodes are scaled to the viewer numbers. The links between nodes indicate whether there are common staff or cast members on both anime. We can observe that most of the anime are connected in the graph, and the ones isolated from the main cluster tend to have low viewer numbers.


What determines the viewer score of an anime? Which one is better, a 110-episode TV series or a 90-minute movie? It's not easy to answer since anime have so many different production type. From the data collected, I built a model using a random forest method to predict the score of an anime from its type, rating, viewers, favorites, director, voice actors, and musicians. The number of favorites on are used as a "score" for different directors, voice actors and musicians who worked on the anime. This model explains 63.99% of variance in scores of anime and rates the importance of variables in the plot below. It appears that type and number of favorites contribute most to the score, followed by number of viewers, rating and voice actors; director, and musician seem to be less important.




In this work, I scraped information about 89244 reviews, 5953 anime and 3530 director/voice actor/musician who worked on these anime. We demonstrated the relationship between the trend of an anime with its number of  reviews, and the connections between different anime's staff and cast crew. In the end we also built a model to predict the score of an anime from the data we collected. The codes of this project are here.


About Author

Yisong Tao

Yisong Tao graduated from Columbia University with a PhD degree in Chemistry, after which he worked as a research associate at Albert Einstein College of Medicine for 6 years. He’s shown good judgement in developing projects, ability to...
View all posts by Yisong Tao >

Related Articles

Leave a Comment

result sd September 8, 2019
It’s going to be end of mine day, but before ending I am reading this enormous post to improve my know-how.
hasil semua togel August 16, 2019
Wow, that’s what I was exploring for, what a material! existing here at this webpage, thanks admin of this web site.
米拉奇战记 Miragine War MMO July 26, 2017
Do you mind if I quote a few of your articles as long as I provide credit and sources back to your site? My website is in the exact same niche as yours and my users would truly benefit from a lot of the information you present here. Please let me know if this alright with you. Many thanks!

View Posts by Categories

Our Recent Popular Posts

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI