Building a Successful Kickstarter Campaign

Tristan Dresbach
Posted on Oct 22, 2018

What characteristics maximize the probability of a successful Kickstarter Campaign?

I. ABSTRACT

Kickstarter is one of the most popular crowdfunding platform on the internet, having accumulated over 3.9 Billion pledged US Dollars. The aim of this project is to web scrape data from Kickstarter and identify key characteristics that make up a successful project.

II. INTRODUCTION

As opposed to traditional funding (angel investors, small business loans or using one's own assets/cash), investors on the Kickstarter platform truly believe in the creator's project. I am not talking about a project that has a scalable revenue model or which is presented as high growth investment. Instead, investors are attracted via 'rewards' setup by the project creator, which guarantee a certain level of gift related to the project in accordance to the level of the donation. Kickstarter matches creators with investors that share a true passion and interest for their project.

The steps to start a Kickstarter project are simple and will be explored further below to optimize a campaign's probability of success:

  1. create a project
  2. set the minimum funding goal
  3. set reward levels
  4. choose a deadline

It is important to note that projects which fail to secure 100% of their funding will see individuals refunded for their donations.

III. WEB-SCRAPING PROCESS

     The first step in creating a scrapy script, was figuring out how to iterate through each individual Kickstarter project page to extract 20+ variables. To do so, I created 3 main loops. Loop#1 went through each category and subcategory you see below which would give us the front page for each subcategory. I found that Kickstarter only allows users to reach page = 200 for a subcategory.

Loop#2 used all urls provided by loop#1 with a page number added from [1;x] with x being given by the user. Loop#2 then extracted all project specific urls for each page, with each subcategory having max. 12 projects/page. Loop#3 then went through each individual project page and obtained the variables needed for analysis such as pledged $s, creation date, final date, creator, location, category,etc...

Loop#4 was of much smaller sized and extracted information from the FAQ section of each url in loop#3 to compliment the majority of variables pulled in loop#3.

Exploring Kickstarter Sub-Categories

Example Project Page

When inspecting Kickstarter's html elements and testing my XPath's in Scrapy Shell, it became evident that most of their website was close to being entirely run on JavaScript. Unfortunately, Scrapy on its own completely ignores JS elements which lead me to only collecting about 15% of my requested data. After a bit of research, I integrated a lightweight web browser, ScrapySplash, which is able to properly render JS pages so that Scrapy is able to read the page's elements.

Another issue was being IP banned by Kickstarter. I ended up having to increase my download delay from 1 second to 3 second and running my script on another machine.

IV. DATA CLEANING

Having extracted Kickstarter's project data, there were multiple modifications that had to be done in python to cleanup the data for analysis (below are the 5 main changes):

  1. convert location string into separate 'city' and 'state' strings
  2. convert strings of the number of updates, rewards levels, created projects and date into integers
  3. create a '%funded' variable ($s funded/$s pledged) as the success metric for my project
  4. create a  'duration' of project variable based off of project creation and end dates
  5. eliminate rows with NA or null values

Main Variables from Data Cleaning

V. DATA ANALYSIS

I first took a look at the distribution of success rates:

As is quite apparent, there are severe outliers in our data. To remedy the situation, I applied a basic IQR of Q1 and Q3 to my data. I then tweaked the IRQ range so as to encompass relevant funding %s. Results are seen below:

The next step was determining the main characteristics that made up a successful project:

1. Type of project to be launched based on quartile distribution vs %funded: Dance, Theater or Music.

At a sub-category level, Dance and Theater both had similar inter-category distributions, however, for Music, it would be best to stay away from Hip-Hop and Electronic Dance music as both means are below 40% funded.

2. Ideal funding goal for the project: between [$300;$1700] is the ideal range and more specifically, $400 and $300.

3. Duration of campaign: except for a 1 day campaign, ideal duration is [1 week; 4 weeks] with a much higher probability of success for 1, 9 and 15 day campaigns.

4. Campaign launch location: Vermont is the best state and Wyoming is this worst.

5. Additional features: number of updates, reward levels and comments: Comments and updates have the heaviest impact on funding %, with values above 20 for both values strongly increasing the probability of a successful campaign.

VI. FURTHER WORK

1) Obtain more data: at least 200 rows / subcategories

2) Make scrapy code more efficient to minimize time taken to scrape

3) Build a model to predict the success of a project

About Author

Related Articles

Leave a Comment

Your email address will not be published. Required fields are marked *

No comments found.

View Posts by Categories


Our Recent Popular Posts


View Posts by Tags