Data Study on Starbucks Coffee Store Amenities

Posted on Nov 12, 2016
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Problem

As I’m walking from Grand Central Station to the NYC Data Science Academy for my first day of class, I’m thinking of which Starbucks Coffee store serves breakfast sandwiches. It is a journey in trial and error and wasted time as I walk into stores along my path until I find the right one. Ā Providing a solution to this problem was the basis for project three of the NYC Data Science boot camp.

The scope of the project (solve a business problem using web scraping technology and present your insight) was a great opportunity to use Scrapy (a web scraping framework) for data capture, R Studio for data analysis and CARTO to prototype a web based product. My solution allows end users to view the Starbucks Coffee Store amenities and their locations in one place. Go ahead, give it a try here.

Technology/Data Scope

  • ScrapyĀ for web scraping stores info including their amenities via the Starbucks Coffee Store Locator website
  • RĀ Studio for EDA (Exploratory Data Analysis)
  • CARTO for rapid web-based productĀ development
  • MCA (Multiple Correspondence Analysis) for analyzing commonalities between the amenities

You can view the CARTO based end user productĀ here.

Data Study on Starbucks Coffee Store Amenities

Process

The store locations are distributed across multiple URLs, spanning New York City. The web browser image below highlights the geospatial (longitude / latitude) coordinates within the URL.

Data Study on Starbucks Coffee Store Amenities

 

Most of the processing work is performed within Scrapy, the magic sauce that allows you to scrape web sites, munge and processĀ the data for analysis and feed to CARTO for map visualization. The following steps were performed within Scrapy:

  • Regex (regular expressions) for creating amenities features - used as filter criteria in CARTO map layers
  • HTML to wrap store locations as hyperlinks - CARTO renders fields in HTML format out of the box

Data Study on Starbucks Coffee Store Amenities

The Spyder framework integrates web scraping and Python programming for a flexible and adaptable solution to capture and process web-based content. Ā R Studio provides a smooth interface and great libraries for EDA to gain insight from the data. The CARTO dataset upload and mapping process is intuitive and allows you to visualize your data on base maps within minutes.

Data Analysis

EDA in R Studio identified the most common and least common amenities within stores.

amenitiesbarplot2

Five most common amenities:

  • LB: LaBoulange
  • WA: Oven-warmed Food
  • LU: Lunch
  • DR: Digital Rewards
  • XO: Mobile Order and Pay

Five least common amenities:

  • DT: Drive-Through
  • EM: Starbucks Evenings
  • WT: tbd - Walk-T
  • FZ: Fizzio Handcrafted Sodas
  • hrs24: Open 24 hours per day

MCA(Multiple Correspondence Analysis) was performed to analyze the systematic patterns of variations with the amenities. The process requires the features to be of categorical data type (factors in an R dataframe).

amenitiesmca

Based on eigenvector values, the clusters identify amenities with the most commonalities. In the diagram above, the cluster on the bottom right represents the most commonĀ amenities across 200 store locations. The cluster to the left has a lower distribution across store locations. Amenity FZ (Fizzio Handcrafted Sodas) stands out as having high direction from the zero intercept. It is the only amenity found in one store location within NYC and perhaps worthy of highlighting toĀ Starbucks Coffee consumers.

Conclusion

Combining Open Source and vendor applications (Scrapy, R Studio, CARTO) allowed me to deliver an interactive productĀ that uses a website as the data source within a two week time line. The web app prototype enables end users to visually explore, analyze and find Starbucks Coffee stores with the most / least common amenities. But most importantly, you can viewĀ a store's amenities with aĀ minimum amount of clicks.

cartomap

Follow up

  • Highlight the Most / Least common amenities when the user hovers over a store location in CARTO
  • Create a Map Layer for Shiny application Citibike Analysis, allowing users to locate Starbucks Coffee stores based on amenities and proximity

Acknowledgement

  • Concept / Development / Design: Chris Valle, JoshuaĀ Litven, Fred Cheung,Ā ConredĀ Wang, Chris Makris,Ā Zheyu (Sammy) Zhang
  • CARTO End User Testing: Carlos Peguero, Jeffrey Regalado, Yasmin Regalado, Cris Macario, Alexander Ryzhkov

Source code is available at GitHub.

About Author

Jhonasttan Regalado

Jhonasttan Regalado is an established leader and technologist with domain expertise in Global Markets Trading and a Masters of Science in Management of Technology from the NYU Tandon School of Engineering, Polytechnic Institute. With practical knowledge and a...
View all posts by Jhonasttan Regalado >

Leave a Comment

spravocnikovami February 28, 2017
Данный портал spravocnikpolekarstvam.ru по ŃŃƒŃ‚Šø своей по ŠæŃ€Š°Š²Ńƒ ŃŃ‡ŠøŃ‚Š°ŠµŃ‚ŃŃ Š°Š±ŃŠ¾Š»ŃŽŃ‚Š½Š¾ бесплатным фармакологическим либо фармацевтическим справочником онлайн. Š”Š»Ń ŃƒŠ“Š¾Š±ŃŃ‚Š²Š° Šø простоты ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŃ порталом в верхнем правом углу, наГ Š¼ŠµŠ½ŃŽ поГ названием "ŠžŠ±Ń‰Š°Ń Ń‡Š°ŃŃ‚ŃŒ", ŠøŠ¼ŠµŠµŃ‚ŃŃ моГуль поиска: ŃŃŽŠ“Š° ŃŠ»ŠµŠ“ŃƒŠµŃ‚ Š²Š±ŠøŃ‚ŃŒ ŠøŠ¼Ń лекарственного препарата Šø в итогах поиска Š±ŃƒŠ“ŃƒŃ‚ показаны ŃŠ¾Š¾Ń‚Š²ŠµŃ‚ŃŃ‚Š²ŠøŃ, найГенные во всех без ŠøŃŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŃ разГелах вебсайта. ŠœŠµŠ“ŠøŃ†ŠøŠ½ŃŠŗŠøŃ… справочников лекарств на ŃŠµŠ³Š¾Š“Š½ŃŃˆŠ½ŠøŠ¹ Гень большее множество, но не Š²Š·ŠøŃ€Š°Ń на такое множество информационных систем, ŠøŃ… не ŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŃ никоим образом меньше. Š”ŠµŠ¹ŃŃ‚Š²ŠøŃ‚ŠµŠ»ŃŒŠ½Š¾, Ń€Š°Š·Š¾Š±Ń€Š°Ń‚ŃŒŃŃ в потоке все новых Šø новых фармацевтических среГств Š¾ŠŗŠ°Š·Ń‹Š²Š°ŃŽŃ‚ся все сложнее Šø Ń‚Ń€ŃƒŠ“Š½ŠµŠµ. И Ń„Š°Ń€Š¼Š°ŠŗŠ¾Š»Š¾Š³ŠøŃ‡ŠµŃŠŗŠ°Ń гонка все намного больше напоминает гонку Š²Š¾Š¾Ń€ŃƒŠ¶ŠµŠ½ŠøŠ¹ или Š±Š¾Ń€ŃŒŠ±Ńƒ за завоевание вселенной. Š¢ŠµŠæŠµŃ€ŃŒ Šø Š¾Š±Ń‹ŠŗŠ½Š¾Š²ŠµŠ½Š½Š¾Š¼Ńƒ ŠŗŠ»ŠøŠµŠ½Ń‚Ńƒ необхоГимо ŃŠ¾Š¾Š±Ń€Š°Š¶Š°Ń‚ŃŒ в Ń‚Š¾Š½ŠŗŠ¾ŃŃ‚ŃŃ… Šø аспектах Š²Ń‹ŠæŃƒŃŠŗŠ° лекарственных среГств, или Ń…Š¾Ń‚Ń бы ŃŃƒŠ¼ŠµŃ‚ŃŒ ŃŠ¾Ń€ŠøŠµŠ½Ń‚ŠøŃ€Š¾Š²Š°Ń‚ŃŒŃŃ. Русский рынок фармацевтических среГств претерпел Š·Š½Š°Ń‡ŠøŃ‚ŠµŠ»ŃŒŠ½Ń‹Šµ ŠøŠ·Š¼ŠµŠ½ŠµŠ½ŠøŃ в хоГе послеГних 5-10 лет. Š”ŠµŃ€ŃŒŃ‘Š·Š½Š¾ убавились Š¾Š±ŃŠŠµŠ¼Ń‹ Š²Ń‹ŠæŃƒŃŠŗŠ° лекарственных препаратов на ŃŠ¾Š¾Ń‚Š²ŠµŃ‚ŃŃ‚Š²ŃƒŃŽŃ‰ŠøŃ… произвоГствах на территории Российской ФеГерации; ŃŃƒŠ±ŃŃ‚Š°Š½Ń†ŠøŠø лекарственных среГств на ŃŠµŠ³Š¾Š“Š½ŃŃˆŠ½ŠøŠ¹ Гень ŃŠøŠ½Ń‚ŠµŠ·ŠøŃ€ŃƒŠµŃ‚ Ń‚Š¾Š»ŃŒŠŗŠ¾ 21 ŠæŃ€ŠµŠ“ŠæŃ€ŠøŃŃ‚ŠøŠµ, которые Š²Ń‹ŠæŃƒŃŠŗŠ°ŃŽŃ‚ антибиотики Šø витамины, Šø Ń‚Š¾Š»ŃŒŠŗŠ¾ 9 - синтетические вещества. нифеГипин рецепт на латинском

View Posts by Categories


Our Recent Popular Posts


View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI