Exploratory Data Analysis of CRE Valuation Metrics

Posted on Feb 4, 2018

Introduction

“The greatest value of a picture is when it forces us to notice what we never expected to see.”  – John Tukey, Exploratory Data Analysis (1977).

I am a champion of John Tukey’s message which urges statisticians to explore the data set prior to formulating hypotheses. Visualization techniques bring data sets to life, revealing unique distributions, and highlighting potential gaps and outliers. Exploratory Data Analysis (EDA) allows researchers to determine the appropriate next-step; this could include gathering more data, executing a parametric or non-parametric test, or further readying the data for a machine-learning algorithm.

Ironically, the first step in my Data Science journey begins with the development of an exploratory data analysis tool for participants in the Commercial Real Estate (CRE) industry. The application summarizes valuation metrics from income generating properties across the U.S.

The CRE industry is no ordinary marketplace, and unlike the residential market, properties are typically non-uniform. The lack or unavailability of data poses great challenges to those attempting to make assertions about a market, submarket, or property. Let’s explore how the Valuation Metrics Portal, built in R-Shiny, helps address these challenges.

Application Overview

 

1)  Examine valuation metrics from the Direct Cap and DCF Approaches.

Cap Rates, Discount Rates, Reversion Rates are extremely important indicators for Investors, Developers, Appraisers of commercial real estate assets. The portal helps build confidence in the summary statistics from two important valuation methods, Direct Capitalization Approach and Discounted Cash Flow Approach.

Distribution of Office Property Cap Rates in New York City.

 

It is important to examine these key metrics across attributes which directly impact the valuation, such as Building Class or Market Orientation.

The scatter plot above illustrates a bifurcation in Cap Rates between Urban and Suburban market areas.

 

2) Compare Markets and Submarkets. Deep dive into Market Rents.

In the CRE industry, participants usually will compare Markets or Submarkets with one another. In order to achieve this comparison, the application leverages a variety of visualization packages (Leaflet, Plotly, GoogleViz) deployed through R-Shiny.

After applying an assortment of search parameters to the application, the box-plot above is produced. The graphic suggests the need for more data in those submarkets with low counts including Northern San Mateo or Palo Alto/Mountain View where the visual reflects a single data point.

 

3) Search and Analyze Market Comparables.

Comparables (comps) refer to information on assets that have recently transacted. These assets are similar and in the same general area as the property of interest. Comps support professionals in their efforts to identify the market value of the subject-property.

Data Set and Next Steps

The data sample for this application is provided by Integra Realty Resources (IRR). IRR is the largest independent and private CRE valuation and consulting firm in North America.

In the next phase of the project, I will look to integrate economic and market indicators to the portal. Furthermore, with familiarity of the underlying data, we can move forward with implementing statistical tests. Feel free to access my GitHub page for access to the underlying R code.

About Author

Raj Tiwari

Raj has 8 years of experience in solving challenging problems and accelerating business growth through data-driven analyses. Raj has a M.S. in Business Analytics from Fordham University in New York City and a B.S. in Economics and Applied...
View all posts by Raj Tiwari >

Related Articles

Leave a Comment

No comments found.

View Posts by Categories


Our Recent Popular Posts


View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI