Data Science Academy X FINERY: Clothing Recommender

Project GitHub | LinkedIn:   Niki   Moritz   Hao-Wei   Matthew   Oren

The skills we demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Stella Kim is a data scientist with 4 years of experience using R, with a Master's in Biotechnology and PhD experience in Cancer Biology and Computational Genomics. Proficient in R, Python, and SQL. Passionate about data analytics, visualization, machine learning, statistical methodology, and programming. Interested in helping businesses make data-driven, customer-centric decisions.

Qifan Wang is a recent NYU graduate with MS in Management Information Systems, with previous experiences in business analytics and marketing industry, Qifan is passionate about applying Data Science on the field of business. With 12 weeks of intensive training in the NYC Data Science Bootcamp, he is more confident with handling large datasets and doing machine learning modeling.

Mimi Chung is an aspiring data scientist with experience in the chemical and innovative material science industry as an associate engineer. Previously, she has worked across multiple functions to research, develop and sell conductive materials. She has experience in data analysis, web scraping with Python, data visualization in R, and predictive modeling utilizing several machine learning methods.

Radha Vundavalli is the Director at Cognizant Technology Solutions.

Here is the link to the Shiny application, and here is the link the GitHub where you can find the associated code.

For our final capstone project, we partnered with Finery, an up-and-coming women's fashion app which utilizes a user-centric business model in order to provide personalized outfit and style recommendations. Their philosophy lies in the fact that user data can clue us in on specific insights that allow businesses to provide a more streamlined process that is tailored to each customer.


We were provided a set of user data that included item descriptions detailing brands, category of items, and occasions. For our application, we provide the user the option to change the algorithm used for recommendation, brand, item category, and the occasion. Each of these variables were cleaned from an assortment of strings that the data provided.


The goal of our project was to create a product recommender system that could integrate descriptive user information, such as age, style preferences, style inspirations (i.e. Instagram models), and behavioral information, such as purchasing history including brand, store, item, and pricing.

We implemented several algorithms in order to try and find the best recommender system. These algorithms include KNNBasic, KNNWithMeans, KNNWithZScore, KNNBaseline, matrix factorization with SVD, SVD++, NMF, and lightFMBasic. The following table, taken from, briefly describes each algorithm.

random_pred.NormalPredictor Algorithm predicting a random rating based on the distribution of the training set, which is assumed to be normal.
baseline_only.BaselineOnly Algorithm predicting the baseline estimate for given user and item.
knns.KNNBasic A basic collaborative filtering algorithm.
knns.KNNWithMeans A basic collaborative filtering algorithm, taking into account the mean ratings of each user.
knns.KNNWithZScore A basic collaborative filtering algorithm, taking into account the z-score normalization of each user.
knns.KNNBaseline A basic collaborative filtering algorithm taking into account a baseline rating.
matrix_factorization.SVD The famous SVD algorithm, as popularized by Simon Funk during the Netflix Prize.
matrix_factorization.SVDpp The SVD++ algorithm, an extension of SVD taking into account implicit ratings.
matrix_factorization.NMF A collaborative filtering algorithm based on Non-negative Matrix Factorization.
lightFM_basic Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback.

Table 1: Brief descriptions of utilized recommender system algoritms, taken from


Finally, we were tasked with creating a user interface which showcases our recommender system.

On the menu located on the left (Figure 1), 5 variables are available for further customization of recommendations. These include the User ID, in which we included 5 users, 8 algorithms, as well as numerous brands, categories of clothing, and occasions. Upon selection of any combination of these variables will yield a more narrowed output due to the addition of constraints in each recommendation.

Figure 1: Left menu on the Shiny application, including 5 variables available for further customization

The output is located in the center of the first tab (Figure 2). The output includes the recommended item name, which may or may not already contain the brand name and category in its string. An image is also accompanied with the output and it varies by category.

Figure 2: Recommendation output, including item name, brand, category, and associated category ID.

Further customization of recommendations (Figure 3) is available immediately below the output. Here, we provide an option to “Like” or “Pass” the recommended output. Upon “Liking,” the item is appended to the list “Shopping Cart.” Upon “Passing,” the item is appended to a “Pass” list. If an item is appended to the “Pass” list, it is removed from future recommendations.

Figure 3: Further customization of recommendations located below the output.

The second tab (Figure 4), “Wardrobe Wizard,” we have a more comprehensive version of our series of recommendations. Here, we include the purchase history of the user, detailing the item name, brand, and category. We also have an output of 7 item recommendations. Finally, we included recommendations that exclude the users’ previous purchases, or excludes previous purchases.

Figure 4: “Wardrobe Wizard” tab, containing a more comprehensive version of our series of recommendation systems.


Our goal was to create a basic application that was versatile and buildable. We provided 8 algorithms for choosing, and although there are 4 variables we allowed for customization for each user, the application can become more sophisticated with more variables. The application is buildable.

About Authors

Stella Kim

Stella Kim is a data scientist with 4 years of experience using R, a Master's in Biotechnology, and PhD experience in Cancer Biology and Computational Genomics. Proficient in R, Python, and SQL. Passionate about data analytics, visualization, machine...
View all posts by Stella Kim >

Qifan Wang

Recent NYU graduate with MS in Management Information Systems, with previous experiences in business analytics and marketing industry, Qifan is passionate about applying Data Science on the field of business. With 12 weeks of intensive training in the...
View all posts by Qifan Wang >

Leave a Comment

No comments found.

View Posts by Categories

Our Recent Popular Posts

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI