Get insights of Instacart Market Basket

Hsiang-Yuan(Joshua) Lee
Posted on Jan 23, 2018

Introduction

Services that deliver the ingredients and recipes you need to make fresh, home-cooked meals, like Instacart have grown in popularity as people are turning away from low-cost, fast food in favor of healthier alternatives. However, those subscription services are still luxury for many so I decided to create a interactive dashboard to help the Instacart have some promotions with the consumers.

 

Research Question

What consumer behaviors can we find based on previous purchasing data?

What's the best time to deliver effective promotions to targeted consumers?

 

Data

The data set is on kaggle's competition and I used orders, order products, products to do the analysis.

 

Order Time

 

The first plot shows that there is a clear effect of day of the week. Most orders are on days 0 and 1. Unfortunately there is no info regarding which values represent which day, but one would assume that this is the weekend.The second plot shows most orders are between 8.00-18.00. The third plot shows that people seem to order more often after exactly 1 week.

We can prove previous plots by the heat map in bottom

In the heat map we can find that density over weekend is relatively high, from the previous graphs, we can come out with a promotion idea to increase customers loyalty. For example, we can send out coupons before weekend comes and to see if consumers to use coupon or not. If consumers use coupons, we can calculate the percentage of consumers who actually use coupon. This can tell us our promotion is effective or not.

 

Top Categories & Average Number of Items do People Buy

In this plot we can find that which products are sold most often (top10). It's obviously that the winner is Bananas. I also find that more and more people prefer to buy organic food now.

Let’s have a look how many items are in the orders. We can see that people most often order 5 items online.

Right now, we can also make a promotion based on these insights. For example, if consumers buy five products at a time, we can add one free organic food or bananas to their order. By doing so, we can encourage consumers buying less than 5 items to add more items to their cart to get one free organic food. we can combine data analysis of consumer data with marketing to better deliver promotion to our target consumers.

 

Summary

Based on the word cloud we can find that popular products are organic products. People care about their health and it totally worth it with the higher price buying organic food. Instacart can put more efforts on organic products/food promotions to better meet consumers need.

If you have any question, please feel free to check my GitHub!

About Author

Hsiang-Yuan(Joshua) Lee

Hsiang-Yuan(Joshua) Lee

Hsiang-Yuan Lee graduated from New York University with a M.S. degree in Industrial Engineering. He loves finding insights from different types of data and is open to learn new skills. Hsiang-Yuan decided to become a professional data scientist...
View all posts by Hsiang-Yuan(Joshua) Lee >

Related Articles

Leave a Comment

Avatar
Get insights of Instacart Market Basket – Mubashir Qasim January 23, 2018
[…] article was first published on R – NYC Data Science Academy Blog, and kindly contributed to […]

View Posts by Categories


Our Recent Popular Posts


View Posts by Tags

2019 airbnb alumni Alumni Interview Alumni Spotlight alumni story Alumnus API artist aws beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Big Data bootcamp Bootcamp Prep Bundles California Cancer Research capstone Career citibike clustering Coding Course Report D3.js data Data Analyst data science Data Science Academy Data Science Bootcamp Data Scientist Data Scientist Jobs data visualization Deep Learning Demo Day dplyr employer networking feature engineering Finance Financial Data Science Flask gbm Get Hired ggplot2 googleVis Hadoop higgs boson Hiring hiring partner events Industry Experts Job JP Morgan Chase Kaggle lasso regression Lead Data Scienctist Lead Data Scientist leaflet linear regression Logistic Regression machine learning Maps matplotlib Medical Research meetup Networking neural network Neural networks New Courses nlp NYC NYC Data Science nyc data science academy NYC Open Data NYCDSA NYCDSA Alumni Open Data painter pandas Portfolio Development prediction Programming PwC python python machine learning python scrapy python web scraping python webscraping Python Workshop R R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest recommendation recommendation system regression Scrapy scrapy visualization seaborn Selenium sentiment analysis Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Tableau Testimonial tf-idf Top Data Science Bootcamp twitter visualization web scraping What to expect word cloud word2vec XGBoost yelp