Interview with Alex Baransky: Data Science Instructor at NYC Data Science Academy

Posted on Dec 3, 2019

Alex Baransky is a data science instructor and bootcamp manager at NYC Data Science Academy. He has received his degree in Environmental Biology from Columbia University. He is an expert in multiple computer languages including Python, R, and SQL. As an engineer at heart and biologist through training, Alex is passionate about animal behavior and finding innovative ways to use data science in the field of biology.

We met with Alex last week to get some useful insights about the data science industry and some advise to those new to the field of Data Science.

Alex Baransky

  • Tell us a bit about your background and interests

I have a degree in Environmental Biology, and I have a passion for learning about all types of animals and their behavior. I am particularly interested in different methods of animal communication. I picked up coding (Java) as a hobby when I was in high school. Later in my studies, I moved on to other languages such as Perl and R. I moved on to Python after I finished my degree. I enjoy reading fantasy, playing guitar, and solving problems with code.

  • What is a recent trend in Data Science?

With the ever-increasing rate of data production, the regulations governing how personal data is collected and utilized have been changing. Large companies like Facebook, Amazon, and Google collect an enormous amount of data on a daily basis and it is the responsibility of not only the user but also the data scientist to contribute to discussions surrounding what limits should be put on data collection and how we define ethical data utilization. In response to the changing regulations, cyber security will play an even larger role in the industry.

  • What appears to be the main issue a total beginner neglects when approaching Data Science?

A responsible data scientist must not only explain the ‘what’, but also the ‘why and how’. Results from analysis are only actionable if they are reproducible. This is where the “science” in data science comes in. Data scientists must adhere to the same professional and ethical standards as any other scientist. This is a key point to remember to be successful in the industry.

  • What can someone do to build their data science skills?

Keep learning! Data science is an ever-evolving field which means there are constantly new tools and techniques that are being developed. Visit popular data science discussion sites and stay up to date on different programming tools to make sure you always have a competitive edge.

  • For someone looking to transfer from a different industry, what should they be aware of in order to be successful at their transition?

Coding can be intimidating for someone who hasn’t spent much time working on problems that involve mathematics and logic. Make sure to take your time when learning the basics so that get a good grasp of the fundamentals before moving on to more advanced topics. For those who really struggle with coding, make sure to know your strengths and how they can be applied to show your value and potential. You don’t always need to be a math whiz or collaborate on the scikit-learn library to contribute to data science. However, you do need to find your fit and understand what skills you can bring to the industry.

  • What’s one piece of advice to aspiring data scientists?

A complete understanding of the basics is more impressive than a weak understanding of more advanced topics. It’s easy to get distracted by the shiny new data science tools and the sexy buzz words, but make sure that your foundation is rock solid before moving on, otherwise your tower of knowledge can easily collapse when someone inevitably tests it.


Alex teaches Python Machine learning and topics in R and Data Analysis for the in-person, live online and part-time online data science bootcamp as well as the part-time courses. Learn more 

About Authors

Pranjali Galgali

Pranjali Galgali is a Marketing and Communications Associate, NYC Data Science Academy. She is a Master's in Digital Media and Strategic Communications from Rutgers University. She enjoys reading and writing about data science, upcoming technologies and loves interviewing...
View all posts by Pranjali Galgali >

Alex Baransky

Alex graduated from Columbia University with training in natural and technical sciences. He enjoys finding ways to utilize data science to answer questions efficiently and to improve the interpretability of results. Alex takes pride in his ability to...
View all posts by Alex Baransky >

Related Articles

Leave a Comment

No comments found.

View Posts by Categories

Our Recent Popular Posts

View Posts by Tags

#python #trainwithnycdsa 2019 airbnb Alex Baransky alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus API Application artist aws beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep Bundles California Cancer Research capstone Career Career Day citibike clustering Coding Course Demo Course Report D3.js data Data Analyst data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization Deep Learning Demo Day Discount dplyr employer networking feature engineering Finance Financial Data Science Flask gbm Get Hired ggplot2 googleVis Hadoop higgs boson Hiring hiring partner events Hiring Partners Industry Experts Instructor Blog Instructor Interview Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter lasso regression Lead Data Scienctist Lead Data Scientist leaflet linear regression Logistic Regression machine learning Maps matplotlib Medical Research Meet the team meetup Networking neural network Neural networks New Courses nlp NYC NYC Data Science nyc data science academy NYC Open Data NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time Portfolio Development prediction Prework Programming PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn Selenium sentiment analysis Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau team TensorFlow Testimonial tf-idf Top Data Science Bootcamp twitter visualization web scraping Weekend Course What to expect word cloud word2vec XGBoost yelp