Massive Open Online Courses Planning, feedback support

Posted on Mar 11, 2020
The skills I demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

LinkedInGitHubEmail | Data | Web App

Massive open online courses (MOOCs) have been growing tremendously in the past five year, meeting the demand of making learning more flexible and accessible.  MOOCs differ from traditional online courses because they offer interaction and feedback to support the students throughout the course.  Many institutions have jumped on the MOOCs band wagon via online platforms, and numerous courses in topics ranging from computer science, business and the creative arts have been posted. is a website that provides content curation for MOOCs.  Class Central lists information which include start times of active sessions,  duration, institution background, online platform links, summary of course, and reviews for each course.  In browsing the website, students are able to make better informed online learning choices.  

While MOOCs offer ample flexibility and accessibility, there are also concerns of effectiveness and productivity.  Questions that have risen include:

  • How many courses can a student take given a specific time frame, if the goal of the student is to obtain certifications? 
  • Given a student's specific preferences, what are the best ranked courses? 
  • How to characterize course duration for courses that have flexible deadlines? 

Data relevant to 14,000+ online courses scraped from have been utilized to answer the questions above.  Meta data and exploratory data analysis visualizations: 


How many courses can a student take given a specific time frame, if the goal of the student were to obtain certifications?   If the student's goal is to complete the courses, the subset of courses we wish to study is the group that offers certifications upon completion.  For this group, we observe that the average course duration is around 100 hours, over the span of 8 weeks.  So if a student were to work full time or part time, it's advantageous for students to take one course at a time.  

Given a student's specific preferences, what are the best ranked courses? 

The entire catalog courses is first filtered by preferences that include:  language, with or without certification, recently starting, and subject name. Once the sub population of courses is designated, a ranking system of using Bayesian Average Ratings is developed.  This algorithm takes into account the number of reviews and ratings data from each course.  For example, top three ranked course selection given the preference of  Computer Science subject, taught in English, with certificate, recently started or starting soon are: 

  • Machine Learning, Stanford University via Coursera 
  • Build a Modern Computer from First Principles: From Nand to Tetris, Hebrew University of Jerusalem via Coursera 
  • Transport Systems: Global Issues and Future Innovations, University of Leeds via FutureLearn

How to characterize course duration for courses that have flexible deadlines? 

While course duration may seem to be an easy variable to interpret, there are actually multiple contributors to its value.  Courses may be considered as a standalone physical entity, which consists of lecture playback time, homework completion time and exam completion time.  These values may be described using normal distributions with bounds around an average.  However in reality, course duration is not so much a physical feature of each course, considering interruptions to leture video playbacks and assignment completion delays due to learning inconsistencies. 

Course duration may have distributions without bounds or patterns because it's determined by each individual user.  Therefore feature engineering is utilized separate course duration into three additional features: lecture playback time,  flexible deadlines yes, and recommended assignment completion time, all of which have to scrapped from the host platform, such as Coursera.  These features are a better indication course duration, and if modeling were to be done on the dataset, recommended assignment completion time could be a candidate predictor.  


About Author

Related Articles

Leave a Comment

No comments found.

View Posts by Categories

Our Recent Popular Posts

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI