New Paradigm in Pharmaceutical Companies

Posted on Aug 6, 2016

New Paradigm of Pharmaceutical companies

by Anne Song

In the past 15 years, the pattern of getting funded in pharma companies,  from research to marketing, has dramatically changed. 

To stay competitive in the open market, big pharmaceutical companies started to purchase fancy commercial lab and plant instruments believing those gadgets would give them the competitive edge over others. This led to the era of “lab automation”.  Initially, these new shiny gadgets were sitting on the lab bench silently, as most experienced scientists rejected the notion of using the tools for generating thousands of samples at a time. 

However, shortly after the new instruments’ dynamic nature were proven, and the instruments became scientists’ indispensable tool, more scientists submitted proposals to collect their “own” tools.   As the instruments took over the majority of scientist’s routine lab work, the scientist’s role has shifted from traditional discovery and development to more of documenting how the expensive tools were used to produce potential new leads. 

And the pressure from the upper management to justify their big ticket items by producing more than expected hits through the new instruments became evident.   

Automation of the lab has its own advantages and disadvantages. 

It creates a safer lab environment dealing with toxic chemicals as the chemicals will be delivered by liquid handling robots under the hood. 

Often times, scientists only design the experiments and all the chemicals and solvents, which are then delivered to each reaction well by robotic arms. 

The problem with this practice is, we end up with too many samples to analyze where only a few are real candidates. Like humans, each chemical has its own chemical and pysical properties. 

Therefore, the massive screening is only suitable for discovery phase with predefined chemical  library sets. In late stages, scientists need to use their scientific experience and knowledge to select the potential candidates based on careful analysis. 

Again, over screening will produce a lot of hits and it is hard to distinguish which ones are the true hits.    Usually automated commercial analytic instruments and usage licenses are very expensive. As a result, pharma companies often get a contract for licenses to use the instruments. And more often than not, upper management determines on how many licenses to purchase based on the current usage of the instruments.   

The following case study involving an expensive instrumental license demonstrate how funding is being distributed internally:   

    1,The usage log of the instrument was pulled out by the given period 

(there are three modules in this instrument) 

  1. Using GGPlot2, the corresponding usage data by each module overlaying total usage (black line represents total usage) 
  2. Repeat the plot using two other modules in different colors (blue for Assay Analyzer, red for Condoseo data) 
  3. Estimate the area under the curve (AUC) to determine the average usage in a given period to determine the number of licenses.

The following three graphs per each site were generated to estimate the usage minutes per day and the types of analysis the instrument was used for in the identification of potential new drugs. The three analyses are:

  • Assay Analyzer, which enables primary screening of a chemical library;  
  • Condoseo, equipped with in­-depth time­series data analysis; 
  • Database Explorer, which aggregates Assay Analyzer and Condoseo.               


Following the presentation of the usage stats and graphs, Nutley site was granted more licenses than Basel site as the comparison of usage of the instrument was clearly higher in Nutley site for the given timeframe.

Nutley Site Usage of Assay Analyzer (July - Dec)           Basel Site Usage of Assay Analyzer (Sept - Dec)

NU_Assay4                    test



 Nutely Condoseo Usage (July - Dec)                         Basel Site Condoseo usage (Sept - Dec)


About Author

Leave a Comment

No comments found.

View Posts by Categories

Our Recent Popular Posts

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI