NFL Analysis: Spend by Position and the Impact on Team Performance

Avatar
Posted on Feb 3, 2019

The code for this project can be found on my GitHub page.

Introduction

As the 2018-2019 National Football League season comes to a conclusion tonight in Atlanta, all 32 teams will be gearing up for the offseason. But how should they allocate their money for next season and beyond? This is a fundamental question that each team's decision-makers must toggle with.

Objective

The objective of this analysis is to examine positional spending and win percentage across all 32 teams in the NFL from 2013-2018. While I would have liked to scrape and analyze more years of data, complete historical NFL salary cap data is difficult to obtain.

The NFL Salary cap is broken into many sub-components. For the purpose of this analysis, I included all team spend with the exception of “Dead Cap”. Since I wanted to measure the impact of actively contributing players  (and “Dead Cap” is dollars spent on players who are no longer on the roster), I felt it was best to exclude these figures in my study.    

Web Scraping

In order to compile the data for analysis, I used Scrapy to extract the relevant data from both Spotrac.com/NFL for Salary Cap data and pro-football-reference.com for Win/Loss data.

To scrape Spotrac.com, I built a web scraper to first loop through every team’s positional spending page, then loop through every year from 2013-2018.

Below are screen shots of both the Spotrac.com/NFL homepage and an example of a team page.

For pro-football-reference.com, I built a web scraper to loop through the years 2013-2018 and scrape standings data for team Win %, Points For and Points Against statistics.

Data Cleaning

Once I extracted the data into two separate CSV files, I used Python to clean the data in preparation for analysis. The main steps I took to do so were:

  •  Merging CSV files (grouped by Year and Team Name) into one Data Frame
    • Year and Team Name were the two common fields in both data sets I was joining
  • Creating additional columns
    • Since the data I retrieved was in absolute dollars spent by positional group/team/year, I created a ‘Spend %’ column to apply to each row of data
    • I also added some custom fields for analysis, aggregating positional group spend percentages for further analysis
  • Creating sub Data Frames for each year of data

Data Analysis

Positional Allocation % by Year

The first piece of information I wanted to analyze was allocation trends by position over the years. In the below chart, I broke down spend % by each positional group.

From left to right, the positional groups analyzed are Offensive Line, Quarterback, Running Back, Wide Receiver, Tight End, Defensive Line, Linebacker, Defensive Back and Special Teams.

As you can see (and much to my surprise), there has been very little variance in leaguewide positional allocation percentages over the past 6 years!

Positional Allocation % vs. Win %

Over the past 6 years, the leagues positional allocation percentages have been extremely constant. But how did spending by position attribute to wins and losses?

I created correlation matrices to assess this relationship:

Offense/Defense/Special Teams
Offense by Position
Defense by Position
Positional "Stacks" (QB/O-Line, Skill Positions, O-Line/D-Line, D-Line/Linebacker, Defense/Special Teams)

As you can see (and much to my surprise, again!), there was no statistically significant correlation between % of team spend on any of these positional groups and/or stacks vs. win %.

The below scatter plots further illustrate this lack of a correlation:

Ideas for Future Development

I plan to continuously evolve and expand this analysis. The opportunities are endless, but below are a few ways I’d like to do so:

  • Scrape team statistics and run regression analyses on team stat metrics, positional spend and  win %
  • Analyze team specific scenarios (i.e. outliers- The best and worst teams, as well as teams with large YoY variances in win %)   

Final Thoughts

As the NFL has evolved over the years by way of rule changes, strategy adjustments and the like, I expected to see significant variances in positional spend % by year. That clearly has not been the case.

Why have we been so constant and how can teams gain an edge by allocating resources differently than the herd? I look forward to continuing to develop this analysis and uncovering more insights on the NFL allocation puzzle.

Enjoy the Super Bowl everyone!

About Author

Avatar

David Levy

David Levy completed his BS from the Kelley School of Business at Indiana University. He has eight years of experience across financial services in various data-oriented, quantitative roles. David enjoys applying an analytical mindset and approach to solve...
View all posts by David Levy >

Leave a Comment

No comments found.

View Posts by Categories


Our Recent Popular Posts


View Posts by Tags

#python #trainwithnycdsa 2019 airbnb Alex Baransky alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus API Application artist aws beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep Bundles California Cancer Research capstone Career Career Day citibike clustering Coding Course Demo Course Report D3.js data Data Analyst data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization Deep Learning Demo Day Discount dplyr employer networking feature engineering Finance Financial Data Science Flask gbm Get Hired ggplot2 googleVis Hadoop higgs boson Hiring hiring partner events Hiring Partners Industry Experts Instructor Blog Instructor Interview Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter lasso regression Lead Data Scienctist Lead Data Scientist leaflet linear regression Logistic Regression machine learning Maps matplotlib Medical Research Meet the team meetup Networking neural network Neural networks New Courses nlp NYC NYC Data Science nyc data science academy NYC Open Data NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time Portfolio Development prediction Prework Programming PwC python python machine learning python scrapy python web scraping python webscraping Python Workshop R R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn Selenium sentiment analysis Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau team TensorFlow Testimonial tf-idf Top Data Science Bootcamp twitter visualization web scraping Weekend Course What to expect word cloud word2vec XGBoost yelp