NYC Noise Complaint Visualization

Posted on Nov 5, 2015

Contributed by Joe Eckert. John took NYC Data Science Academy 12 week full time Data Science Bootcampย program between Sept 23 to Dec 18, 2015.ย The post was based on his firstย class project(due at 2nd week of the program).

September 30, 2015

Introduction
This was the first project with the NYC Data Science Academy. The purpose of this project was to gain a foundational understanding of data collection, data munging and data visualization. This project visualizes the noise complaint data within the NYC 311 Call Dataset. Source data used for this project was the NYC 311 Call Dataset from 2010 to September 2015 filtered on complaint types containing โ€œnoiseโ€. In addition, the 2010 Census population data by zip code was used to control for population density across zip codes.

Data Preparation

Load required packages


library(dplyr)
library(tidyr)
library(ggplot2)
library(ggmap)
library(openair)
library(zipcode)

Import source data

noiseData <- read.csv('noise.csv', stringsAsFactors = FALSE)

Convert data to tbl_df

noise <- tbl_df(noiseData)

Remove rows with missing location data

noise <- filter(noise, !is.na(Latitude) | !is.na(Longitude))

Remove unneeded columns

noise <- select(noise, -Closed.Date, -Incident.Address, -Street.Name, -Cross.Street.1, -Cross.Street.2, -Intersection.Street.1, -Intersection.Street.2, -Address.Type, -City, -Landmark, -Facility.Type, -Due.Date, -Resolution.Description, -Resolution.Action.Updated.Date, -X.Coordinate..State.Plane., -Y.Coordinate..State.Plane., -Park.Facility.Name, -Park.Borough, -School.Name, -School.Number, -School.Region, -School.Code, -School.Phone.Number, -School.Address, -School.City, -School.State, -School.Zip, -School.Not.Found, -School.or.Citywide.Complaint, -Vehicle.Type, -Taxi.Company.Borough, -Taxi.Pick.Up.Location, -Bridge.Highway.Name, -Bridge.Highway.Direction, -Road.Ramp, -Bridge.Highway.Segment, -Garage.Lot.Name, -Ferry.Direction, -Ferry.Terminal.Name)

Convert created date to POSIXlt object for using date elements

noise$Created.Date <- as.POSIXlt(noise$Created.Date, "%m/%d/%Y %I:%M:%S %p", tz = "EST")

Create date fields to be used for time series analysis

noise <- mutate(noise, year = noise$Created.Date$year + 1900)
noise <- mutate(noise, month = noise$Created.Date$mon + 1)
noise <- mutate(noise, day = noise$Created.Date$mday)
noise <- mutate(noise, wkDay = noise$Created.Date$wday + 1)
noise <- mutate(noise, hour = noise$Created.Date$hour)

Round lat/lon to 3 decimals, to allow for density calculation based on location

This was needed because the latitude and longitude data were too granular to properlly map complaint density

noiseRnd <- mutate(noise, latRnd = signif(noise$Latitude, 5))
noiseRnd <- mutate(noiseRnd, lonRnd = signif(noise$Longitude, 5))
noiseRnd <- mutate(noiseRnd, areaCoord = paste0(noiseRnd$latRnd, ",", noiseRnd$lonRnd))

Distribution of Complaints by Borough
As expected, Manhattan, with a majority of the population in NYC generates roughly 42% of the noise complaints to 311.

Compare distribution of complaints by borough


boroughAnly <- group_by(select(noiseRnd, -Created.Date), Borough, year)
boroughAnly <- summarise(boroughAnly, count = n())
boroughAnly <- ungroup(boroughAnly)
boroughAnly <- filter(boroughAnly, boroughAnly$Borough != "Unspecified")

yearAnly <- group_by(select(noiseRnd, -Created.Date), year)
yearAnly <- summarise(yearAnly, total = n())

boroughAnly <- left_join(boroughAnly, yearAnly, by = "year")
boroughAnly$perc <- (boroughAnly$count / boroughAnly$total) * 100
boroughAnly <- group_by(boroughAnly, year)

Plot distribution of calls by borough

boroughCalls <- qplot(boroughAnly$year, boroughAnly$perc, boroughAnly, fill = boroughAnly$Borough, geom = "bar", stat = "identity")
boroughCalls <- boroughCalls + ggtitle("Distribution of Complaints by Borough")
boroughCalls <- boroughCalls + xlab("Year") + ylab("Percent of Complaints")
boroughCalls <- boroughCalls + guides(fill=guide_legend(title="Borough"))
boroughCalls <- boroughCalls + theme_bw() + theme(legend.position = "bottom")
boroughCalls <- boroughCalls + scale_fill_brewer(palette = "Set2")
boroughCalls <- boroughCalls + geom_text(aes(label = paste0(round(boroughAnly$perc,2),"%")), size = 4, hjust = 0.5, vjust = 2, position = "stack")
boroughCalls

Image 01

Heat Map of Complaints by Year
Here you can see that over time the number of complaints generated in the borough of Brooklyn is increasing over time. This is likely due to population increases in these neighborhoods.

Set map coordinates and download Google map


nycMapCoord <- c(-74.30,40.45, -73.65, 40.95)
nycMap <- get_map(location = nycMapCoord, source="google", maptype="roadmap")
noiseGrp <- group_by(select(noiseRnd, -Created.Date), areaCoord)

Plot heat map by year

mapYear <- ggmap(nycMap)
mapYear <- mapYear + stat_density2d(aes(x=lonRnd, y=latRnd, fill="red", alpha=..level.., size=0), data=noiseGrp, geom = 'polygon')
mapYear <- mapYear + facet_wrap(~ year) + ggtitle("Frequency of Noise Complaints by Location")
mapYear <- mapYear + theme(axis.ticks = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), legend.position="none")
mapYear <- mapYear + xlab("") + ylab("")
mapYear

Image 02

Heat Map of Complaints by Year
However, when controlling for population density by zip code we see that there is less of a disparity between the number of complaints being generated by Manhattan versus the outer boroughs.

Population by Zip Code


popzipData <- read.csv('popzip.csv', skip =1)
popzip <- select(popzipData, Geography, Geographic.area.1, Population)
popzip <- mutate(popzip, zipcode = substr(Geographic.area.1, 6, 11))
popzip$zipcode <- as.integer(popzip$zipcode)
popzip <- filter(popzip, !is.na(zipcode))
popzip <- tbl_df(popzip)
names(popzip)[4] <- "zip"

data(zipcode)
zipcode <- tbl_df(zipcode)
zipcode$zip <- as.numeric(zipcode$zip)

Summarise noise data by zip and year

noiseZip <- group_by(select(noiseRnd, -Created.Date), year, Incident.Zip)
noiseZip <- summarise(noiseZip, count = n())
names(noiseZip)[2] <- "zip"
noiseZip <- tbl_df(noiseZip)
noiseZip <- left_join(noiseZip, popzip, by = "zip")
noiseZip <- left_join(noiseZip, zipcode, by = "zip")
noiseZip <- select(noiseZip, -Geography, -Geographic.area.1, -city, -state)
noiseZip <- filter(noiseZip, !is.na(Population))
noiseZip$Population <- as.numeric(noiseZip$Population)
noiseZip$callpercap <- (noiseZip$count / noiseZip$Population)

Plot frequency of complaints per capita

mapYearPop <- ggmap(nycMap)
mapYearPop <- mapYearPop + stat_density2d(aes(x=longitude, y=latitude, fill= "callpercap", alpha=..level.., size=0), data=noiseZip, geom = 'polygon')
mapYearPop <- mapYearPop + facet_wrap(~ year)
mapYearPop <- mapYearPop + ggtitle("Frequency of Complaints Per Capita (2010 Census)")
mapYearPop <- mapYearPop + theme(axis.ticks = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), legend.position="none")
mapYearPop <- mapYearPop + xlab("") + ylab("")
mapYearPop

Image 03

Daily Complaint Volume (2010 - September 2015)
When looking at the total number of daily calls over time we see a large spike in 2015. This is likely due to increased utilization of the 311 service rather than an increase in actual noise incidents. The City of New York has been marketing the 311 service more and has recently been providing more ways to access the system to report incidents (i.e. smartphone apps, twitter, text and web submission).

Prepare data for daily analysis


dataforcal <- select(noise, Created.Date, Unique.Key)
dataforcal <- mutate(dataforcal, Created.Date = as.character(Created.Date))
dataforcal <- mutate(dataforcal, Created.Date = substr(Created.Date, 0, 10))
dataforcal <- group_by(dataforcal, Created.Date)
dataforcal <- summarise(dataforcal, count = n())
names(dataforcal)[1] <- "date"
dataforcal$date <- as.POSIXct(dataforcal$date)

Noise complaint volume 2010 - 2015

compVol <- qplot(date, count, data = dataforcal, geom = "smooth", xlab = "Date", ylab = "Daily Complaints", main = "Daily Complaints 2010 - September 2015") + theme_bw()
compVol

Image 04

A Daily View of 2014
The calendar below shows the level of calls by day throughout 2014. As expected, the summer months generate more complaints with Saturdays and Sundays having the highest complaint volume.

Plot 2014 data on a calendar heatmap


calPlot <- calendarPlot(dataforcal, "count", year = 2014, main = "Noise Complaints by Day 2014", cols = "increment")

Image 05

Monthly Complaints for 2014
The graph below shows complaints by month, further supporting the argument that there is a higher frequency of noise complaints during the summer months.

Complaints by month


noiseMonth <- group_by(select(noiseRnd, -Created.Date), month)
noiseMonth <- filter(noiseMonth, year == 2014)
noiseMonth <- summarise(noiseMonth, count = n())
monthlyComp <- qplot(noiseMonth$month, noiseMonth$count, noiseMonth, geom = "bar", stat = "identity")
monthlyComp <- monthlyComp + ggtitle("Frequency of Complaints by Month 2014")
monthlyComp <- monthlyComp + xlab("Month") + ylab("Number of Complaints")
monthlyComp <- monthlyComp + theme_bw()
monthlyComp <- monthlyComp + scale_x_discrete(limits = noiseMonth$month, labels = c("January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"))
monthlyComp <- monthlyComp + theme(axis.text.x=element_text(angle=-45))
monthlyComp

Image 06

2014 Complaints by Weekday
The graph below shows complaints by weekday. This shows that there is a higher frequency of noise complaints generated over the weekends.

Complaints by weekday


noiseWkdy <- group_by(select(noiseRnd, -Created.Date), wkDay)
noiseWkdy <- filter(noiseWkdy, year == 2014)
noiseWkdy <- summarise(noiseWkdy, count = n())

wkdyComp <- qplot(noiseWkdy$wkDay, noiseWkdy$count, noiseWkdy, geom = "bar", stat = "identity")
wkdyComp <- wkdyComp + ggtitle("Frequency of Complaints by Weekday 2014")
wkdyComp <- wkdyComp + xlab("Weekday") + ylab("Number of Complaints")
wkdyComp <- wkdyComp + theme_bw()
wkdyComp <- wkdyComp + scale_x_discrete(limits = noiseWkdy$wkDay, labels = c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
wkdyComp <- wkdyComp + theme(axis.text.x=element_text(angle=-45))
wkdyComp

Image 07

Frequency of Complaints by Type
The graph below breaks down the 2014 complaint data by complaint type. โ€œLoud Musicโ€ and โ€œBanging/Poundingโ€ are the two most common complaints.

Comparison of complaint types


type <- group_by(select(noiseRnd, -Created.Date), Complaint.Type, Descriptor)
type <- summarise(type, count = n())

Manual mapping of complaint types to a common category

type$typeClean <- c(rep(NA, length(type$Complaint.Type)))
type$typeClean[grepl('music', type$Descriptor, ignore.case = TRUE)] <- "Loud Music"
type$typeClean[grepl('talking', type$Descriptor, ignore.case = TRUE)] <- "Loud Talking"
type$typeClean[grepl('construction|hammer', type$Descriptor, ignore.case = TRUE)] <- "Construction"
type$typeClean[grepl('dog|animal', type$Descriptor, ignore.case = TRUE)] <- "Animal"
type$typeClean[grepl('banging', type$Descriptor, ignore.case = TRUE)] <- "Banging/Pounding"
type$typeClean[grepl('horn|vehicle|truck|engine', type$Descriptor, ignore.case = TRUE)] <- "Vehicle"
type$typeClean[grepl('alarm', type$Descriptor, ignore.case = TRUE)] <- "Alarm"
type$typeClean[grepl('air con', type$Descriptor, ignore.case = TRUE)] <- "HVAC Equipment"
type$typeClean[type$Complaint.Type == "Noise - Helicopter"] <- "Aircraft"
type$typeClean[is.na(type$typeClean)] <- "Other"
type <- ungroup(type)

noiseType <- left_join(select(noiseRnd, -Created.Date), type, by = c("Complaint.Type", "Descriptor"))

noiseTypeP <- group_by(noiseType, month, typeClean)
noiseTypeP <- filter(noiseTypeP, year == 2014)
noiseTypeP <- summarise(noiseTypeP, count = n())

noiseTypePlot <- qplot(noiseTypeP$month, noiseTypeP$count, noiseTypeP, geom = "bar", fill = noiseTypeP$typeClean, stat = "identity")
noiseTypePlot <- noiseTypePlot + ggtitle("Frequency of Complaints by Month & Type 2014")
noiseTypePlot <- noiseTypePlot + xlab("Month") + ylab("Number of Complaints")
noiseTypePlot <- noiseTypePlot + theme_bw()
noiseTypePlot <- noiseTypePlot + scale_x_discrete(limits = noiseMonth$month, labels = c("January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"))
noiseTypePlot <- noiseTypePlot + theme(axis.text.x=element_text(angle=-45))
noiseTypePlot$labels$fill <- "Complaint Type"
noiseTypePlot

Image 08

Heat Map of Complaints by Type (2014)
The maps below show a heat map for each type of common noise complaint and the frequency of those complaints throughout the city.

Plot 2014 heat map by complaint type


noiseType_map <- group_by(filter(noiseType, year == 2014), typeClean, areaCoord)
mapType <- ggmap(nycMap)
mapType <- mapType + stat_density2d(aes(x=lonRnd, y=latRnd, fill = "red", alpha=..level.., size=0), data=noiseType_map, geom = 'polygon')
mapType <- mapType + facet_wrap(~ typeClean) + ggtitle("Frequency of Noise Complaints by Type (2014)")
mapType <- mapType + theme(axis.ticks = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), legend.position="none")
mapType <- mapType + xlab("") + ylab("")
mapType

Image 09

Loud Music Complaints
A look at loud music noise complaints from 2010 - 2015. It is interesting to see how the density of noise complaints has moved away from Midtown Manhattan towards Harlem and Brooklyn.

Plot 2014 heat map for Loud Music


noiseType_map <- group_by(filter(noiseType, typeClean == "Loud Music"), year, areaCoord)
mapType <- ggmap(nycMap)
mapType <- mapType + stat_density2d(aes(x=lonRnd, y=latRnd, fill = "red", alpha=..level.., size=0), data=noiseType_map, geom = 'polygon')
mapType <- mapType + facet_wrap(~ year) + ggtitle("Frequency of Loud Music Complaints by Year")
mapType <- mapType + theme(axis.ticks = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), legend.position="none")
mapType <- mapType + xlab("") + ylab("")
mapType

Image 10
Alarm Complaints
It is interesting to see here that in 2014 there was a large increase in alarm complaints in the Kew Gardens neighborhood relative to other locations.

Plot 2014 heat map for Alarms


noiseType_map <- group_by(filter(noiseType, typeClean == "Alarm"), year, areaCoord)
mapType <- ggmap(nycMap)
mapType <- mapType + stat_density2d(aes(x=lonRnd, y=latRnd, fill = "red", alpha=..level.., size=0), data=noiseType_map, geom = 'polygon')
mapType <- mapType + facet_wrap(~ year) + ggtitle("Frequency of Alarm Complaints by Year")
mapType <- mapType + theme(axis.ticks = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), legend.position="none")
mapType <- mapType + xlab("") + ylab("")
mapType

Image 11

Animal Complaints
Of all the complaint types, animal noise complaints are the most evenly distributed throughout the city.

Plot 2014 heat map for Animals


noiseType_map <- group_by(filter(noiseType, typeClean == "Animal"), year, areaCoord)
mapType <- ggmap(nycMap)
mapType <- mapType + stat_density2d(aes(x=lonRnd, y=latRnd, fill = "red", alpha=..level.., size=0), data=noiseType_map, geom = 'polygon')
mapType <- mapType + facet_wrap(~ year) + ggtitle("Frequency of Animal Complaints by Year")
mapType <- mapType + theme(axis.ticks = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), legend.position="none")
mapType <- mapType + xlab("") + ylab("")
mapType

Image 12

About Author

Joe Eckert

Joe is currently studying with the NYC Data Science Academy to pursue his passion for big data. Joe previously worked for 3 years at JPMorgan's Corporate Bank. He graduated in 2012 with a BA in Financial Economics from...
View all posts by Joe Eckert >

Leave a Comment

No comments found.

View Posts by Categories


Our Recent Popular Posts


View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI