Attend our free course demo on Dec 11: Hands-on Machine Learning in Python. RSVP

Python

    Deep Learning (with TensorFlow 2, Keras and PyTorch)

    This course is an introduction to artificial neural networks that brings high-level theory to life with interactive labs featuring TensorFlow, Keras, and PyTorch — the leading Deep Learning libraries. Essential theory will be covered in a manner that provides students with a complete intuitive understanding of Deep Learning’s underlying foundations. Paired with hands-on code run-throughs in Jupyter notebooks as well as strategic advice for overcoming common pitfalls, this foundational knowledge will empower individuals with no previous understanding of neural networks to build production-ready Deep Learning applications across all of the contemporary families, including:

    • Convolutional Networks for machine vision
    • Long Short-Term Memory Recurrent Nets for natural language processing and time series analysis
    • Generative Adversarial Networks for producing jaw-dropping synthetic data
    • Reinforcement Learning for complex sequential decision-making
    See time options
    Introductory Python

    This is a class for computer-literate people with no programming background who wish to learn basic Python programming. The course is aimed at those who want to learn “data wrangling” – manipulating downloaded files to make them amenable to analysis. We concentrate on language basics such as list and string manipulation, control structures, simple data analysis packages, and introduce modules for downloading data from the web.

    See time options
    Data Science with Python: Data Analysis and Visualization

    This class is a comprehensive introduction to data science with Python programming language. This class targets people who have some basic knowledge of programming and want to take it to the next level. It introduces how to work with different data structures in Python and covers the most popular data analytics and visualization modules, including numpy, scipy, pandas, matplotlib, and seaborn. We use Ipython notebook to demonstrate the results of codes and change codes interactively throughout the class.

    See time options
    Data Science with Python: Machine Learning

    This 20-hour Machine Learning with Python course covers all the basic machine learning methods and Python modules (especially Scikit-Learn) for implementing them. The five sessions cover: simple and multiple Linear regressions; classification methods including logistic regression, discriminant analysis and naive bayes, support vector machines (SVMs) and tree based methods; cross-validation and feature selection; regularization; principal component analysis (PCA) and clustering algorithms. After successfully completing of this course, you will be able to explain the principles of machine learning algorithms and implement these methods to analyze complex datasets and make predictions in Python.

    See time options
    Data Science Bootcamp Deposit

    Deposit for 12-week immersive data science bootcamp. In this program students will learn beginner and intermediate levels of Data Science with R, Python, Spark and Hadoop as well as widely used industry tools such as Selenium, Caret, Tensorflow, MongoDB, AWS, and more. A deposit of $5,000 is required within 7 days of acceptance to secure your spot. After making your deposit, the remaining tuition is due on the first day of the Bootcamp.

    See time options