I studied mechanical engineering and physics for my undergrad at a top university and work in product management with a focus on search. I took this class to satisfy a personal interest in the subject matter and familiarize myself enough with the fundamentals of machine learning to be able to explore the field more deeply on my own. I was also motivated by a career interest: the subject matter is highly relevant to my domain, and I feel that developing an understanding of the concepts and how to deploy them myself will make me better at my job long-term. Prior to enrolling in the class, I spent roughly 8-10 hours learning R and felt sufficiently prepared (I had some previous programming experience).

In the end I was extremely happy with this class (Machine Learning in R on Saturdays, 8 hrs at a time). The curriculum and content were excellent, the instructor, Luke, was fantastic and the assignments were challenging and informative.

I felt the course did a really great job of driving home the core fundamentals of each subject with a focus on statistics, mathematical theory, derivations and best practices. We covered a LOT of material, yet the material had a lot of depth. I thought the sequencing of the subject matter was very well thought out as well. The class was demanding and had the caliber of a graduate-level course.

The course also struck a very nice balance between theory and implementation. After learning about a new model, we would immediately implement it in class using R on our own machines. Luke did a particularly great job at relating the implementation back to the concepts and teaching us how to interpret outcomes of our analyses (I can’t stress enough how important this latter point was for me). He has a really strong grasp of the subject matter, he’s very patient and responsive to questions, offers a lot of insightful commentary on the theory, implementations, and best practices, and he cares about his students a lot. The homework assignments complement the class nicely as well, helping to drive home the methods taught in class and how to interpret your work.

If you’re interested in developing a strong understanding of the fundamentals of machine learning in a rigorous format, this class is for you. I also couldn’t recommend Luke as an instructor more. He’s awesome! I was also was very pleased with my choice of the R class. R reduces a lot of the friction in model implementation, which allowed me to focus on developing an understanding of the concepts and interpreting results.
Rahul Bhat
Rahul Bhat
Took the weekend course for Machine Learning with R. Course was very helpful in helping me understand the basics of Machine Learning, different models. My instructor was Luke. He was very helpful and would spend enough time covering each topic. He even took an additional class because he didn't want to rush through the material. Overall I am quite satisfied with the results. Would recommend Luke to anyone else who is interested to venture into Machine Learning field.
Spencer Stebbins
Spencer Stebbins
Data Scientist
CKM Advisors
I attended the July cohort and was then a Data Science in Residence at the NYCDSA prior to accepting an offer for a Data Scientist role at a consulting firm based in NYC. I will do my best in this review to be as straightforward about my experience and address a lot of questions I had prior to the program and have understood a lot of incoming students to have had through prepping them for the program.
My Overall Opinion:
Lets start with this: get over your hesitation, take a leap of faith, and you surely will not regret your decision to attend the NYC Data Science Academy 12 Week Bootcamp. Whatever reservations you have, you are not alone; almost all graduates have felt that prior to attending the program. You may be wondering about if this program will really teach me the necessary skills to get a job, am I prepared enough for this, will the program be rigorous enough, and most pivotally; is this the right decision for me? I cannot speak for you, but I can attest to my own experience and I graduated this program with no regrets, soak in a waterfall of new knowledge and skills, and have walked away a smarter, more capable, more confident professional now employed Data Scientist in field. The program is amazing, and the instructors are passionate, and you will learn a lot, but that also being said, you get as much as you put in and the first step is trusting in yourself to join and commit to the three rigorous and insightful months ahead of you.
My Background:
Prior to attending NYCDSA, I was a software engineer at a large shipping company for almost 2 years focusing primarily on front end development. Before that I attending another bootcamp called Hack Reactor, similar to NYCDSA, to study software engineering and javascript. It was growing interest in machine learning, the success of my experience at Hack Reactor and the thirst for that similar immersive and intensive program that led to me to the NYC Data Science Academy. In another life, I graduated from NYU with a degree in Music Business.
Common Questions:
Do you need a masters or a background in a quantitative field?
The answer is no. No, you do not need a masters degree or professional experience in a quantitative field. During my cohort, I thought some of the best and most creative presentations and chosen topics by students were from some that had no prior coding or heavy math experience. That being said, coming in with a math or software engineering background will definitely allow you to vamp up your projects flashiness and you may have an easier time understanding some of the formulas associated with the advanced machine learning algorithms.
Will I get a job from this program? What are the job stats? etc..
Although I can't attest to job stats, I received my first offer less than 6 weeks after the program ended. I met the firm at the Career Day at the end of the program. Vivian, the CEO of NYCDSA, is the job placement tsar and wizard and without her and her relationships with so many great firms there would not be as many companies at the career day as there are: Spotify, JP Morgan Chase, MindShare, etc.. Vivian will do every in her power to connect you with your dream job. That being said, getting an offer is entirely on you. You must have great visual and complex projects, you must interview well, and you must be actively job seeking and cultivating relationships on your own. Vivian and the team will do everything they can to prepare you and connect you with your dream job, but you need to show up with the bus fair to ride the bus. I cannot stress this enough.
How does this compare to other bootcamps?
I am actually in a unique position to answer this question. A few years prior to graduating NYCDSA, I graduated Hack Reactor, which is a similar 12 week bootcamp, but for software engineering. Prior to that I took web development course at General Assembly, Coursera Machine Learning courses, Harvard Extension School’s Intro to Data Science class to name a few. Needless to say, I’m hungry for knowledge and a challenge. I can’t speak to the other Data Science bootcamps out there like Metis or Galvanize, but I can say that there is nothing like 3 months of learning something at a such a rapid pace. The sum of its parts is greater than the whole and you can spend years learning on your own secondary to whatever else you are doing or you can jump in the deep end. I did before with Hack Reactor and walked away amazed and the same held true for NYCDSA.
Inside Tips:
Pick good project topics. Your projects will be portfolio to potential employers and if your project outshines the other students, employers will take notice.
Pick good project team mates. I didn't have a poor experience with anyone I worked with, but it goes without saying that if you pick bright, easy to work with project partners, you'll be able to build a better end product.
If you don’t know how to code in R or Python and have no prior experience code - Learn now. Codeschool.com is an excellent introductory resource.
DO NOT think you will have a social life. This is only 3 months of your life, but 3 very important months, so give it your all and don't expect to get as much out of it if you don't.
Comments to the Academy:
Scaling the program will require more job assistance personnel.
Increasing the amount of coding done in the program may be beneficial as most jobs now require coding every day and are rarely purely theoretically
Additional content on computer vision would be fun
More TAs and one on one knowledge quizzes (like done as a group at the end of the course)
Read More
Lydia Kan
Lydia Kan
Data Scientist
I will recommend this bootcamp to anyone who is eager to learn and have great passion towards data science. Before I attended the bootcamp, I received my master degree in marketing from school. I did not have a lot of math and coding background back then. With my passion towards data science, I decided to take a deep dive and applied for the NYCDSA’s 12 weeks bootcamp. Due to my limited coding background, they did not accept me at the beginning, instead, they provided one month prep course for me to get prepared for the bootcamp. I attended the September cohort after the prep course. It was one of the best decisions I have ever made. With the extensive knowledge and training, and great support in job assistance, I am able to land my dream job in 2 months after bootcamp.
The curriculum is very well designed. I did a lot of research before I applied for this bootcamp. NYCDSA is the only program that covered data science in both R and python, big data processing tools such as Hadoop, Spark at once. I am really glad that I started my journey in data science with them, so my foundation in data science is much stronger now than I was when taking online classes by myself before. The curriculum will also help you to develop a portfolio for job hunting, however, you are the one who decides how much effort you want to put in and how far you want to go.
The instructors and TAs are the best part of the bootcamp. You will never receive this kind of learning experience through online courses. They are all very knowledgeable in computer science, statistics, and machine learning. They are so passionate, and so willing to help each student. There were so many times that they stayed after 7pm, came in during weekends, answered slacks questions at 11pm to provide extra helps. They are far more than just instructors and TAs, but also supportive friends after I finished the program.
Job assistance:
I got hired by a major ad agency as a data scientist within two months of completing the bootcamp.
The hiring team put the best effort to help their students. They hosted awesome hiring partners event, which the students got to make connections and talk to some great companies, such as IBM, citi bank, Mindshare, Publicis and so on. During my job hunting process, Vivian tried her best to provide any connections with the companies that I really wanted to get in. I also received a lot of helps and mentorship from Chris. The way he helped me to prepare for net-working and interviews are very strategic, systematic, and effective. I learned so much and I won’t get this far without him. You can learn all the hard skills anywhere else, but this kind of support and mentorship is hard to find even if you have a lot of money.
They provide as many helps as they can, but you have to be proactive and eager to learn to take everything in!
Read More
David Steinmetz
David Steinmetz
Machine Learning Data Engineer
Capital One
Attending the NYC Data Science Academy 12-week Data Science Bootcamp was one of the best decisions I have made. It was instructive and rewarding. It provided a speedy career transition and enabled me to get a job within two months of graduation as a Machine Learning Data Engineer at Capital One. I will summarize my background and describe my experience at the bootcamp and why I recommend it highly.
I have a PhD in materials science, which is a blend of math, chemistry and physics. I had programmed models and simulations in Matlab, but have no formal computer science education. I switched to management consulting after the PhD to apply my analytical skills in the business world and quickly realized there is a great need for data analysis at companies. After taking the complete Data Science Specialization on Coursera, I knew I wanted to switch to data science and found the NYCDSA bootcamp to be the most comprehensive, teaching R, Python, and Big Data technologies.
I recommend this bootcamp for three reasons: quality of teachers and materials, structure, and networking, both at the bootcamp and in job placement.
It takes a lot of knowledge, experience, and hard work to distill complicated and complex topics and communicate them in a simple and understandable way. The materials presented in this bootcamp were presented that way. When I can understand statistical concepts which I had tried to understand for a long time in a matter of minutes, it means the quality of teaching and materials are excellent. During the job search, I also realized that the correct balance between breadth and depth had been selected to give us a very solid foundation on which to start a job in data science.
The teachers were exceptional. Their passion and dedication to the students were visible from day one. This was shown again and again in how hard they worked to constantly improve and expand lecture materials to how much support they gave to each individual’s success outside of class. Having them as teachers was an honor.
The structure of the bootcamp allowed an incredible amount of materials to be covered in a short amount of time. Particularly, it used both R and Python for statistical concepts and machine learning. In addition, we learned about many other tools in extra sessions designed to round out our knowledge. Big Data technologies such as Hadoop, Hive, and Spark were covered toward the end of the bootcamp. Spark was asked for often in interviews, and familiarity with it was helpful. Having five projects under your belt is exactly what you need when interviewing. I always had an example I could use to answer questions. The value of this is not to be underestimated.
Lastly, the opportunity to network was incredible. You are beginning your data science career having forged strong bonds with 35 other incredibly intelligent and inspiring people who go to work at great companies. The value of those friendships and the ability to create a strong network at the beginning of your data science career will become evident a couple years down the road.
I was fortunate enough to meet and give a presentation to managers at Spotify, at Meetups, and get connected to many hiring partners. Vivian, the founder, is a strong proponent and has an incredible network. She seemed to have a contact at almost every company I wanted to apply to. Her one-on-one evaluation of interview performance with me was very helpful. She and the rest of the staff are very dedicated to each student’s success, being clear in their purpose that this experience will change both you and your family’s lives for the better. Their hearts are in it and their dedication is clear.
If you are considering this bootcamp to get more into data science, it is exactly the accelerator you need to get your career in this field off the ground. I cannot recommend it enough.
Read More
Charles Leung
Charles Leung
Societe Generale Corporate and Investment Banking - SGCIB
I recommend this bootcamp to anyone who wants to transition into the field of Data Science. Before this bootcamp I was a process engineer for a large North American steel company. With the rate of growth in the technology industry, I knew it was time to transition to a new career, and I could have not chosen a better place to do so than NYC Data Science Academy. Instructors: The Instructors were amazing. Chris is extremely knowledgeable in statistics, and his passion for teaching really shines through. With every lecture, he not only shows mastery of the material but also the best way to teach complex materials to a class of non-programmers. Luke goes above and beyond to describe the theory behind the algorithms. His work ethic is shown through the countless hours he has stayed to review lessons with students and believe in continuous improvement. The TAs (Shu, Zeyu) were immense help, and had very good knowledge of big data applications (Hadoop ecosystem, front end work, SQL database design, etc.) Curriculum: The bootcamp offers a good basis for understanding prediction models and when to use which types of algorithms. There just isn't enough time to cover all aspects of statistics and the many branches of prediction models. Both R and Python are taught here, which allows for great flexibility. While this bootcamp is rigorous, self discipline is required to fully delve into algorithms and build impressive products for your portfolio (natural language processing, image recognition, recommendation engines, etc. ; these advanced topics are covered briefly but enough for you to take the reins). All in all I believe the bootcamp set me on the right foot into the industry. Job Assistance: While there is some assistance, the majority of the legwork work is still on the student to be duly diligent - sending out applications, getting interviews, networking and working their way up towards their dream job. There is no easy formula for this, and you MUST continue learning (Algorithms, data architecture, and more advanced ML topics etc. ; network to find out what people in your ideal companies expect you to know) and reviewing material even after the bootcamp to prepare for interviews.
Read More