Global Renewable Electricity Statistics: 1994 - 2014

Posted on Oct 24, 2018

The earth’s ever-growing population demands a proportionally increasing supply of available electricity. Conversely, modern climate science has revealed how damaging historical practices of energy production and consumption have been to the global ecosystem. Navigating these competing constraints has led to the political and technological advancement of renewable energy sources as competitive fuel alternatives. But how are these changes taking place? Which technologies are having the greatest impact on international energy portfolios? At what pace and in which countries? The purpose of this tool is to investigate these questions through visualization of production and consumption trends over the past 20 years.


The first tab allows us to look at production and consumption by country, measured in millions of Kilowatt-Hours.

The first dropdown menu option, ‘Production’, generates a choropleth map of the globe shaded according to renewable energy production. Countries with low renewable production have lighter shading while countries with higher renewable production have correspondingly darker shading. The user can decide a date range and a set of renewable technologies they want to visualize and the map will dynamically filter its output to meet these constraints.


Mousing over a particular country will bring up a hovering menu breaking down that country’s renewable energy production portfolio. This menu includes gross electricity production for a given set of filters as well as a breakdown of how much each chosen energy source contributed to the gross under these parameters.


The second dropdown option, ‘Consumption’, generates a similar choropleth map of global electricity consumption over a given date range. Comparing the two maps gives a visual representation of how renewable energy sources have grown relative to the growth in demand. In both cases, the gross energy measurements have been scaled by log10 to account for a wide disparity between small and large countries in both energy consumption and production.


The second tab of the web tool allows us to directly compare two country’s year-to-year renewable energy production as a proportion of their total consumption. As with the ‘Production’ map, users have the ability to filter this output according to a certain year range and set of renewable technologies. This dynamic graph is supplemented by summary boxes stating the average proportion of renewables for the two chosen countries, as a well as a ranking for the top and bottom five countries under the given filter. This tab allows the user to look at individual countries more granularly and further investigate any trends perceived in the visualized data.


In its current state, this project is best suited for high-level exploration of our international renewable energy portfolio. This could be expanded to include a wider range of energy sources for the user to choose from, along with an option to un-scale the data as a means of trading visual aesthetic for greater interpretability. In order to better visualize an expanded data set,  and do so with a higher level of rigor, the tool could be modified to incorporate a clustering algorithm for identifying countries with similar energy portfolios.

About Author

Leave a Comment

No comments found.

View Posts by Categories

Our Recent Popular Posts

View Posts by Tags

#python #trainwithnycdsa 2019 airbnb Alex Baransky alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus API Application artist aws beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep Bundles California Cancer Research capstone Career Career Day citibike clustering Coding Course Demo Course Report D3.js data Data Analyst data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization Deep Learning Demo Day Discount dplyr employer networking feature engineering Finance Financial Data Science Flask gbm Get Hired ggplot2 googleVis Hadoop higgs boson Hiring hiring partner events Hiring Partners Industry Experts Instructor Blog Instructor Interview Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter lasso regression Lead Data Scienctist Lead Data Scientist leaflet linear regression Logistic Regression machine learning Maps matplotlib Medical Research Meet the team meetup Networking neural network Neural networks New Courses nlp NYC NYC Data Science nyc data science academy NYC Open Data NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time Portfolio Development prediction Prework Programming PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn Selenium sentiment analysis Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau team TensorFlow Testimonial tf-idf Top Data Science Bootcamp twitter visualization web scraping Weekend Course What to expect word cloud word2vec XGBoost yelp