NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Data Visualization > Data Analysis of Fatal Police Encounters

Data Analysis of Fatal Police Encounters

Karl Lundquist
Posted on Feb 20, 2022

In the United States police kill civilians at an alarmingly high rate. When compared with data of the US to other wealthy countries, US police officers kill civilians at a rate over three times greater than the next highest country [1]. Black Lives Matter protests sparked by police killings called for defunding the police and police reform, but ultimately resulted in little to no change. This is in part due to a lack of clarity in what changes need to be made to reduce the number of fatal encounters with police. To address this issue I have analyzed a comprehensive dataset of police-related deaths that includes information on deaths since the year 2000 [2].

In light of recent protests around police reform, there is clearly significant interest in reducing the number of police-related deaths, but who are the stakeholders who can benefit from addressing this issue? Citizens who interact with the police would benefit by experiencing a reduced level of fear associated with their interactions. Police departments and police training companies would also benefit through improved interactions and reduced risk.

Local and State governing bodies wishing to reduce this number would benefit from being better informed by knowing what types of further police training to allocate funds to and what alternate services could be funded. They could better ascertain how to reroute 911 calls to organizations other than the police department who may be better equipped to handle certain situations. 

FatalEncounters.org maintains a comprehensive dataset of police-related deaths that includes information on deaths since the year 2000. It includes over 30,000 data-points with 36 attributes gathered by a team of volunteers and researchers using media records and police reports. This dataset includes all deaths that occur when police are present whether police are responsible or not. One caveat of this dataset is that it could be undercounted due to police chases not being reported in the media. Also, since police control the narrative delivered to the media, these reports are inevitably biased toward the perspective of the police.

As of October 2021 this dataset had over 30,000 entries. It consisted of predominantly categorical variables with a large number of unique entries, many of which were redundant. It required a moderate amount of cleaning with many missing values and a large number of temporary or redundant columns.

A big challenge with this dataset was that there was no clear dependent variable for use in training models. 

In addressing this issue, we formulated the hypothesis that age, race, and gender have an affect on the likelihood of the intended use of lethal force, cause of death, whether or not victim was armed or fleeing. The subsequent data analysis attempts to address this hypothesis. 

The number of fatal encounters has roughly doubled since 2000 while the US population has only grown by about 17% in the same timeframe. 

The median age for a fatal encounter was 33. This is around four years below the US median age of 37.2 in 2010. 

90.3% of fatal encounters with police were male victims. 

While the percentage of fatal encounters with African-American/Black victims made up only 29.1% of the dataset, this number is over twice as high as would be expected from population estimates alone. The representation of black victims is 2.2x higher than would be expected if there were no racial bias. In contrast, Hispanic/Latino and European-American/White victims are underrepresented in this dataset (0.95x and 0.84x respectively).

70.5% of deaths were caused by a gunshot wound. Better police training of use in firearms and nonlethal uses of force could reduce this number.  

60.1% of deaths used intentionally lethal force while 39.9% of deaths were accidental. 36.6% of victims were unarmed and 35.8% of victims were actively fleeing when they were killed. 

Males were more likely to be targeted for the use of deadly force and they are also more likely to be armed.

Older victims are more likely to be the target of lethal force, are more likely to be armed, and are also more likely to be fleeing when killed.

Black victims are less likely to be armed and more likely to be fleeing when killed. 

In summary, the number of police related deaths in the United States is increasing at an alarming rate. Fatal encounters with police happen with people who are typically younger than the median US age (33 vs 37), predominantly male (90.3%), and disproportionately black (29.1% vs. 13.4%). The vast majority of these deaths (70.5%) are due to gunshot wounds.

An alarmingly high percentage of these deaths (39.9%) were accidental (without the intention of deadly force). 36.6% of the victims were unarmed, and most disturbingly, 35.8% of victims were fleeing when they were killed. Males are more likely to be targeted for the use of deadly force and they are also more likely to be armed. Older victims are more likely to be the target of lethal force, are more likely to be armed, and are also more likely to be fleeing when killed. Black victims are less likely to be armed and more likely to be fleeing when killed.

In this project we were able to glimpse some of the factors driving police killings in the US. Better police training in nonlethal means of force, deescalation, and reducing racial bias could help to decrease the number of police killings. Improvements to this project could be made by creating an app to better disseminate our findings, running an ML model, using NLP on text descriptions, and integrating other data sources.

In order to determine which departments and cities are problematic we need to normalize with population data. We also would need to integrate broader police interaction data to employ model building on whether or not an interaction resulted in death. Finally we need to consult with domain experts to clarify and validate our findings. 

GitHub

References:

[1] https://www.prisonpolicy.org/blog/2020/06/05/policekillings/

[2] https://fatalencounters.org/

[3] Mamyjomarash, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons (featured image)

The skills I demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

 

About Author

Karl Lundquist

Karl is a data scientist with nine years of performing technical data analysis and research design in an academic setting. He is highly skilled at communicating complex analytic insights to a general audience. He is currently working to...
View all posts by Karl Lundquist >

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application