NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship 🏆 Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release 🎉
Free Lesson
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See 🔥
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular 🔥 Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New 🎉 Generative AI for Finance New 🎉 Generative AI for Marketing New 🎉
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular 🔥 Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular 🔥 Data Science R: Machine Learning Designing and Implementing Production MLOps New 🎉 Natural Language Processing for Production (NLP) New 🎉
Find Inspiration
Get Course Recommendation Must Try 💎 An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release 🎉
Free Lessons
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See 🔥
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > All State Loss Prediction

All State Loss Prediction

Smitha Mathew
Posted on Jul 24, 2017

AllState_Kernel

All State Loss Prediction

install.packages(“rmarkdown”)

title : All State Loss Prediction - Multiple Linear Regression on select fields output: html_document: toc: true theme: united — # Required Libraries
- rmarkdown is been used to generate a record of the work - caret is the core library used to enable training and generation of predictions

library(rmarkdown)
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2

Input Files

train.csv - file containing 132 columns including loss. test.csv - file containing 131 columns. Loss needs to be predicted submit.csv- sample submission file. Contains id from test.csv and predicted loss

Our objective is to - use the train data to build the algorithm - apply the model over the test data - predict the loss for each case #################### DATA ###################################

Reading the train.csv file - id - Categorical Variables from 1 through 116 - Continous variables from 1 through 14 - loss

#allstate=read.csv("./train.csv", nrows=10000)
allstate=read.csv("./train.csv")
head(allstate)
##   id cat1 cat2 cat3 cat4 cat5 cat6 cat7 cat8 cat9 cat10 cat11 cat12 cat13
## 1  1    A    B    A    B    A    A    A    A    B     A     B     A     A
## 2  2    A    B    A    A    A    A    A    A    B     B     A     A     A
## 3  5    A    B    A    A    B    A    A    A    B     B     B     B     B
## 4 10    B    B    A    B    A    A    A    A    B     A     A     A     A
## 5 11    A    B    A    B    A    A    A    A    B     B     A     B     A
## 6 13    A    B    A    A    A    A    A    A    B     A     A     A     A
##   cat14 cat15 cat16 cat17 cat18 cat19 cat20 cat21 cat22 cat23 cat24 cat25
## 1     A     A     A     A     A     A     A     A     A     B     A     A
## 2     A     A     A     A     A     A     A     A     A     A     A     A
## 3     A     A     A     A     A     A     A     A     A     A     A     A
## 4     A     A     A     A     A     A     A     A     A     B     A     A
## 5     A     A     A     A     A     A     A     A     A     B     A     A
## 6     A     A     A     A     A     A     A     A     A     A     A     A
##   cat26 cat27 cat28 cat29 cat30 cat31 cat32 cat33 cat34 cat35 cat36 cat37
## 1     A     A     A     A     A     A     A     A     A     A     A     A
## 2     A     A     A     A     A     A     A     A     A     A     A     A
## 3     A     A     A     A     A     A     A     A     A     A     B     A
## 4     A     A     A     A     A     A     A     A     A     A     A     A
## 5     A     A     A     A     A     A     A     A     A     A     A     A
## 6     A     A     A     A     A     A     A     A     A     A     A     A
##   cat38 cat39 cat40 cat41 cat42 cat43 cat44 cat45 cat46 cat47 cat48 cat49
## 1     A     A     A     A     A     A     A     A     A     A     A     A
## 2     A     A     A     A     A     A     A     A     A     A     A     A
## 3     A     A     A     A     A     A     A     A     A     A     A     A
## 4     A     A     A     A     A     A     A     A     A     A     A     A
## 5     A     A     A     A     A     A     A     A     A     A     A     A
## 6     A     A     A     A     A     A     A     A     A     A     A     A
##   cat50 cat51 cat52 cat53 cat54 cat55 cat56 cat57 cat58 cat59 cat60 cat61
## 1     A     A     A     A     A     A     A     A     A     A     A     A
## 2     A     A     A     A     A     A     A     A     A     A     A     A
## 3     A     A     A     A     A     A     A     A     A     A     A     A
## 4     A     A     A     A     A     A     A     A     A     A     A     A
## 5     A     A     A     A     A     A     A     A     A     A     A     A
## 6     A     A     A     A     A     A     A     A     A     A     A     A
##   cat62 cat63 cat64 cat65 cat66 cat67 cat68 cat69 cat70 cat71 cat72 cat73
## 1     A     A     A     A     A     A     A     A     A     A     A     A
## 2     A     A     A     A     A     A     A     A     A     A     A     A
## 3     A     A     A     A     A     A     A     A     A     A     A     A
## 4     A     A     A     A     A     A     A     A     A     A     A     B
## 5     A     A     A     A     A     A     A     A     A     A     B     A
## 6     A     A     A     A     A     A     A     A     A     A     B     A
##   cat74 cat75 cat76 cat77 cat78 cat79 cat80 cat81 cat82 cat83 cat84 cat85
## 1     A     B     A     D     B     B     D     D     B     D     C     B
## 2     A     A     A     D     B     B     D     D     A     B     C     B
## 3     A     A     A     D     B     B     B     D     B     D     C     B
## 4     A     A     A     D     B     B     D     D     D     B     C     B
## 5     A     A     A     D     B     D     B     D     B     B     C     B
## 6     A     A     A     D     B     D     B     D     B     B     C     B
##   cat86 cat87 cat88 cat89 cat90 cat91 cat92 cat93 cat94 cat95 cat96 cat97
## 1     D     B     A     A     A     A     A     D     B     C     E     A
## 2     D     B     A     A     A     A     A     D     D     C     E     E
## 3     B     B     A     A     A     A     A     D     D     C     E     E
## 4     D     B     A     A     A     A     A     D     D     C     E     E
## 5     B     C     A     A     A     B     H     D     B     D     E     E
## 6     B     B     A     A     A     A     A     D     D     D     E     C
##   cat98 cat99 cat100 cat101 cat102 cat103 cat104 cat105 cat106 cat107
## 1     C     T      B      G      A      A      I      E      G      J
## 2     D     T      L      F      A      A      E      E      I      K
## 3     A     D      L      O      A      B      E      F      H      F
## 4     D     T      I      D      A      A      E      E      I      K
## 5     A     P      F      J      A      A      D      E      K      G
## 6     A     P      J      D      A      A      E      E      H      F
##   cat108 cat109 cat110 cat111 cat112 cat113 cat114 cat115 cat116    cont1
## 1      G     BU     BC      C     AS      S      A      O     LB 0.726300
## 2      K     BI     CQ      A     AV     BM      A      O     DP 0.330514
## 3      A     AB     DK      A      C     AF      A      I     GK 0.261841
## 4      K     BI     CS      C      N     AE      A      O     DJ 0.321594
## 5      B      H      C      C      Y     BM      A      K     CK 0.273204
## 6      B     BI     CS      A     AS     AE      A      K     DJ 0.546670
##      cont2    cont3    cont4    cont5    cont6    cont7   cont8   cont9
## 1 0.245921 0.187583 0.789639 0.310061 0.718367 0.335060 0.30260 0.67135
## 2 0.737068 0.592681 0.614134 0.885834 0.438917 0.436585 0.60087 0.35127
## 3 0.358319 0.484196 0.236924 0.397069 0.289648 0.315545 0.27320 0.26076
## 4 0.555782 0.527991 0.373816 0.422268 0.440945 0.391128 0.31796 0.32128
## 5 0.159990 0.527991 0.473202 0.704268 0.178193 0.247408 0.24564 0.22089
## 6 0.681761 0.634224 0.373816 0.302678 0.364464 0.401162 0.26847 0.46226
##    cont10   cont11   cont12   cont13   cont14    loss
## 1 0.83510 0.569745 0.594646 0.822493 0.714843 2213.18
## 2 0.43919 0.338312 0.366307 0.611431 0.304496 1283.60
## 3 0.32446 0.381398 0.373424 0.195709 0.774425 3005.09
## 4 0.44467 0.327915 0.321570 0.605077 0.602642  939.85
## 5 0.21230 0.204687 0.202213 0.246011 0.432606 2763.85
## 6 0.50556 0.366788 0.359249 0.345247 0.726792 5142.87

Generating summary statistics on all fields

summary(allstate)
##        id         cat1       cat2       cat3       cat4       cat5      
##  Min.   :     1   A:141550   A:106721   A:177993   A:128395   A:123737  
##  1st Qu.:147748   B: 46768   B: 81597   B: 10325   B: 59923   B: 64581  
##  Median :294540                                                         
##  Mean   :294136                                                         
##  3rd Qu.:440680                                                         
##  Max.   :587633                                                         
##                                                                         
##  cat6       cat7       cat8       cat9       cat10      cat11     
##  A:131693   A:183744   A:177274   A:113122   A:160213   A:168186  
##  B: 56625   B:  4574   B: 11044   B: 75196   B: 28105   B: 20132  
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  cat12      cat13      cat14      cat15      cat16      cat17     
##  A:159825   A:168851   A:186041   A:188284   A:181843   A:187009  
##  B: 28493   B: 19467   B:  2277   B:    34   B:  6475   B:  1309  
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  cat18      cat19      cat20      cat21      cat22      cat23     
##  A:187331   A:186510   A:188114   A:187905   A:188275   A:157445  
##  B:   987   B:  1808   B:   204   B:   413   B:    43   B: 30873  
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  cat24      cat25      cat26      cat27      cat28      cat29     
##  A:181977   A:169969   A:177119   A:168250   A:180938   A:184593  
##  B:  6341   B: 18349   B: 11199   B: 20068   B:  7380   B:  3725  
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  cat30      cat31      cat32      cat33      cat34      cat35     
##  A:184760   A:182980   A:187107   A:187361   A:187734   A:188105  
##  B:  3558   B:  5338   B:  1211   B:   957   B:   584   B:   213  
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  cat36      cat37      cat38      cat39      cat40      cat41     
##  A:156313   A:165729   A:169323   A:183393   A:180119   A:181177  
##  B: 32005   B: 22589   B: 18995   B:  4925   B:  8199   B:  7141  
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  cat42      cat43      cat44      cat45      cat46      cat47     
##  A:186623   A:184110   A:172716   A:183991   A:187436   A:187617  
##  B:  1695   B:  4208   B: 15602   B:  4327   B:   882   B:   701  
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  cat48      cat49      cat50      cat51      cat52      cat53     
##  A:188049   A:179127   A:137611   A:187071   A:179505   A:172949  
##  B:   269   B:  9191   B: 50707   B:  1247   B:  8813   B: 15369  
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  cat54      cat55      cat56      cat57      cat58      cat59     
##  A:183762   A:188173   A:188136   A:185296   A:188079   A:188018  
##  B:  4556   B:   145   B:   182   B:  3022   B:   239   B:   300  
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  cat60      cat61      cat62      cat63      cat64      cat65     
##  A:187872   A:187596   A:188273   A:188239   A:188271   A:186056  
##  B:   446   B:   722   B:    45   B:    79   B:    47   B:  2262  
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  cat66      cat67      cat68      cat69      cat70      cat71     
##  A:179982   A:187626   A:188176   A:188011   A:188295   A:178646  
##  B:  8336   B:   692   B:   142   B:   307   B:    23   B:  9672  
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  cat72      cat73      cat74      cat75      cat76      cat77     
##  A:118322   A:154275   A:184731   A:154307   A:181347   A:    49  
##  B: 69996   B: 34017   B:  3561   B: 34010   B:  6183   B:   358  
##             C:    26   C:    26   C:     1   C:   788   C:   408  
##                                                         D:187503  
##                                                                   
##                                                                   
##                                                                   
##  cat78      cat79      cat80      cat81      cat82      cat83     
##  A:   788   A:  7064   A:   783   A:   788   A: 19322   A: 26038  
##  B:186526   B:152929   B: 46538   B: 24132   B:147536   B:141534  
##  C:   645   C:  1668   C:  3492   C:  9013   C:  2655   C:  4958  
##  D:   359   D: 26657   D:137505   D:154385   D: 18805   D: 15788  
##                                                                   
##                                                                   
##                                                                   
##  cat84      cat85      cat86      cat87      cat88          cat89       
##  A: 29450   A:   788   A:  1589   A:   788   A:168926   A      :183744  
##  B:   431   B:186005   B:103852   B:166992   B:     7   B      :  4312  
##  C:154939   C:  1011   C: 10290   C:  8819   D: 19302   C      :   220  
##  D:  3498   D:   514   D: 72587   D: 11719   E:    83   D      :    33  
##                                                         E      :     5  
##                                                         I      :     2  
##                                                         (Other):     2  
##  cat90          cat91        cat92      cat93      cat94      cat95    
##  A:177993   A      :111028   A:124689   A:   432   A:   738   A: 3736  
##  B:  9515   B      : 42630   B:   628   B:  1133   B: 51710   B:  109  
##  C:   728   G      : 26734   C:    62   C: 35788   C: 13623   C:87531  
##  D:    70   C      :  6400   D:    11   D:150237   D:121642   D:79525  
##  E:     6   D      :  1149   F:     1   E:   728   E:    91   E:17417  
##  F:     4   E      :   254   H: 62901              F:   494            
##  G:     2   (Other):   123   I:    26              G:    20            
##      cat96        cat97     cat98          cat99           cat100     
##  E      :174360   A:41970   A:105492   P      :79455   F      :42970  
##  D      :  7922   B:   34   B:   542   T      :72591   I      :39933  
##  B      :  2957   C:78127   C: 21485   R      :10290   L      :19961  
##  G      :  2665   D: 3779   D: 50557   D      : 8844   K      :13817  
##  F      :   343   E:47450   E: 10242   S      : 7045   G      :12935  
##  A      :    35   F:  213              N      : 2894   J      :12027  
##  (Other):    36   G:16745              (Other): 7199   (Other):46675  
##      cat101           cat102           cat103           cat104     
##  A      :106721   A      :177274   A      :123737   E      :42925  
##  D      : 17171   B      :  5155   B      : 33342   G      :40660  
##  C      : 16971   C      :  4929   C      : 16508   D      :27611  
##  G      : 10944   E      :   482   D      :  7806   F      :19228  
##  F      : 10139   D      :   449   E      :  4473   H      :17187  
##  J      :  7259   G      :    15   F      :  1528   K      :14297  
##  (Other): 19113   (Other):    14   (Other):   924   (Other):26410  
##      cat105          cat106          cat107          cat108     
##  E      :76493   G      :47165   F      :47310   B      :65512  
##  F      :62892   H      :37713   G      :28560   K      :42435  
##  G      :20613   F      :36143   H      :23461   G      :21421  
##  D      :12172   I      :21433   J      :22405   D      :19160  
##  H      :11258   J      :18281   K      :20236   F      :10242  
##  I      : 2941   E      :13000   I      :20066   A      : 9299  
##  (Other): 1949   (Other):14583   (Other):26280   (Other):20249  
##      cat109           cat110          cat111           cat112     
##  BI     :152918   CL     :25305   A      :128395   E      :25148  
##  AB     : 21933   EG     :24654   C      : 32401   AH     :18639  
##  BU     :  3142   CS     :24592   E      : 14682   AS     :17669  
##  K      :  2999   EB     :21396   G      :  7039   J      :16222  
##  G      :  1353   CO     :17495   I      :  3578   AF     : 9368  
##  BQ     :  1067   BT     :16365   K      :  1353   AN     : 9138  
##  (Other):  4906   (Other):58511   (Other):   870   (Other):92134  
##      cat113          cat114           cat115          cat116      
##  BM     :26191   A      :131693   K      :43866   HK     : 21061  
##  AE     :22030   C      : 16793   O      :26813   DJ     : 20244  
##  L      :13058   E      : 16475   J      :23895   CK     : 10162  
##  AX     :12661   J      :  8199   N      :22438   DP     :  9202  
##  Y      :11374   F      :  7905   P      :21538   GS     :  8736  
##  K      : 7738   N      :  2455   L      :16125   CR     :  6862  
##  (Other):95266   (Other):  4798   (Other):33643   (Other):112051  
##      cont1              cont2              cont3              cont4       
##  Min.   :0.000016   Min.   :0.001149   Min.   :0.002634   Min.   :0.1769  
##  1st Qu.:0.346090   1st Qu.:0.358319   1st Qu.:0.336963   1st Qu.:0.3274  
##  Median :0.475784   Median :0.555782   Median :0.527991   Median :0.4529  
##  Mean   :0.493861   Mean   :0.507188   Mean   :0.498918   Mean   :0.4918  
##  3rd Qu.:0.623912   3rd Qu.:0.681761   3rd Qu.:0.634224   3rd Qu.:0.6521  
##  Max.   :0.984975   Max.   :0.862654   Max.   :0.944251   Max.   :0.9543  
##                                                                           
##      cont5            cont6             cont7            cont8       
##  Min.   :0.2811   Min.   :0.01268   Min.   :0.0695   Min.   :0.2369  
##  1st Qu.:0.2811   1st Qu.:0.33610   1st Qu.:0.3502   1st Qu.:0.3128  
##  Median :0.4223   Median :0.44094   Median :0.4383   Median :0.4411  
##  Mean   :0.4874   Mean   :0.49094   Mean   :0.4850   Mean   :0.4864  
##  3rd Qu.:0.6433   3rd Qu.:0.65502   3rd Qu.:0.5910   3rd Qu.:0.6236  
##  Max.   :0.9837   Max.   :0.99716   Max.   :1.0000   Max.   :0.9802  
##                                                                      
##      cont9             cont10           cont11            cont12       
##  Min.   :0.00008   Min.   :0.0000   Min.   :0.03532   Min.   :0.03623  
##  1st Qu.:0.35897   1st Qu.:0.3646   1st Qu.:0.31096   1st Qu.:0.31166  
##  Median :0.44145   Median :0.4612   Median :0.45720   Median :0.46229  
##  Mean   :0.48551   Mean   :0.4981   Mean   :0.49351   Mean   :0.49315  
##  3rd Qu.:0.56682   3rd Qu.:0.6146   3rd Qu.:0.67892   3rd Qu.:0.67576  
##  Max.   :0.99540   Max.   :0.9950   Max.   :0.99874   Max.   :0.99848  
##                                                                        
##      cont13             cont14            loss          
##  Min.   :0.000228   Min.   :0.1797   Min.   :     0.67  
##  1st Qu.:0.315758   1st Qu.:0.2946   1st Qu.:  1204.46  
##  Median :0.363547   Median :0.4074   Median :  2115.57  
##  Mean   :0.493138   Mean   :0.4957   Mean   :  3037.34  
##  3rd Qu.:0.689974   3rd Qu.:0.7246   3rd Qu.:  3864.05  
##  Max.   :0.988494   Max.   :0.8448   Max.   :121012.25  
## 

Generating plots based on all categorical fields

#histogram(loss, data=allstateFile[,c(132,2:118)])

# Multiple histograms
#par(mfrow=c(3, 3))
#colnames <- dimnames(allstateFile$loss)[[2]]
#    hist(allstateFile[,i], xlim=c(0, 3500), breaks=seq(0, 3500, 100), main=colnames[i], #probability=TRUE, col="gray", border="white")
#}
hist(allstate$loss)

We see that the loss itself is heavily skewed. We need to normalize this to get better prediction. Will Try doing a log on the loss to see if its better.

allstate$logloss <- log(allstate$loss)
hist(allstate$logloss)

carvars = paste("cat", 1:116, sep="")
for( catvar in 1:8){
   catvar <- paste("cat", catvar, sep="")
   ggplot(allstate, aes_string("loss", fill=catvar)) + geom_histogram()
}

PREDICTION

Algorithm - Multiple Linear Regression on select fields with 10 fold cross validation

Paritioning training data

We are going to take 80% of the train data and use it for our model training. The remaining 20% of the data will be used to determine how well our model worked.

#featurePlot(x=allstate[,3], y=allstate[,1], plot='density')
#allstate=allstateFile
set.seed(1234)
# define an 80%/20% train/test split of the dataset
split=0.80
trainIndex <- createDataPartition(allstate$id, p=split, list=FALSE)
data_train <- allstate[ trainIndex,]
data_test <- allstate[-trainIndex,]
#str(data_train)

10 fold Cross Validated Model

We will do a cross validated 10 fold process to train the model. Method choosen is lm Metric used to select the model is the least RMSE

catfactors <- paste("cat", 1:116, sep="")
contfactors <-paste("cont", 1:14, sep="")
formula = reformulate(termlabels = c(catfactors,contfactors), response = 'logloss')
#modelFit <- train( formula,data=allstate, method="rpart" )  
#varImp(modelFit)

rpart variable importance

only 20 most important variables shown (out of 1037)

     Overall

cat80D 100.00 cat80B 99.75 cat12B 78.30 cat79D 75.14 cat79B 59.11 cat10B 18.35 cat1B 18.27 cat81D 16.09 cat81B 14.15

#Taking only important variables
catfactors <- c("cat80","cat12","cat79", "cat10", "cat1", "cat81")
formula = reformulate(termlabels = c(catfactors,contfactors), response = 'logloss')
ControlParamteres <- trainControl(method = "cv",
                                  number = 10,
                                  savePredictions = TRUE,
                                  classProbs = TRUE,
                                  verboseIter = TRUE
)
parametersGrid <-  expand.grid(nrounds=100,
                               lambda=.5,
                               alpha=.5,
                               eta = 0.1
                            )

model.xgboost <- train(formula, data = data_train,method = "xgbLinear", trControl = ControlParamteres, tuneGrid=parametersGrid)
## Loading required package: xgboost
## Warning in train.default(x, y, weights = w, ...): cannnot compute class
## probabilities for regression
## + Fold01: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## - Fold01: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## + Fold02: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## - Fold02: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## + Fold03: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## - Fold03: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## + Fold04: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## - Fold04: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## + Fold05: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## - Fold05: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## + Fold06: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## - Fold06: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## + Fold07: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## - Fold07: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## + Fold08: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## - Fold08: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## + Fold09: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## - Fold09: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## + Fold10: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## - Fold10: nrounds=100, lambda=0.5, alpha=0.5, eta=0.1 
## Aggregating results
## Fitting final model on full training set
warnings()
## NULL
summary(model.xgboost)
##             Length Class              Mode       
## handle           1 xgb.Booster.handle externalptr
## raw         422143 -none-             raw        
## niter            1 -none-             numeric    
## call             5 -none-             call       
## params           4 -none-             list       
## callbacks        1 -none-             list       
## xNames          26 -none-             character  
## problemType      1 -none-             character  
## tuneValue        4 data.frame         list       
## obsLevels        1 -none-             logical    
## param            0 -none-             list

Validating our model

Validation of the trained model on the test data(20% of the train data)

x_test <- data_test[c(catfactors,contfactors)]
y_test <- data_test[,"logloss"]
#plot(x_test,y_test)

Compute predictions based on the trained model on the 20% of test validation data

predictions <- predict(model.xgboost, x_test)
str(predictions)
##  num [1:37662] 7.1 8.06 7.31 8.73 8.93 ...
head(y_test)
## [1] 6.845720 7.924380 7.031936 8.184723 9.237975 8.693787
str(predictions)
##  num [1:37662] 7.1 8.06 7.31 8.73 8.93 ...
hist(predictions)

Computing RMSE and R2

caret::RMSE(pred = predictions, obs = y_test)
## [1] 0.6188222
caret::R2(pred = predictions, obs = y_test)
## [1] 0.4221604
#defaultsummary(data_train)

Predicting Loss

Application of the trained model on the data set that needs prediction.

testFile=read.csv("/users/smithamathew/kaggle/test.csv")
out_test <-testFile
id <-out_test$id
str(id)
##  int [1:125546] 4 6 9 12 15 17 21 28 32 43 ...
logloss <- predict(model.xgboost, out_test)
loss <- exp(logloss)
head(loss)
## [1] 1328.056 2035.727 6157.791 4315.195 1413.001 1512.084
hist(loss)

out_file=cbind(id,loss)
head(out_file)
##      id     loss
## [1,]  4 1328.056
## [2,]  6 2035.727
## [3,]  9 6157.791
## [4,] 12 4315.195
## [5,] 15 1413.001
## [6,] 17 1512.084
options(scipen=999)
write.csv(file="/users/smithamathew/kaggle/submit.csv",out_file,row.names = FALSE)

About Author

Smitha Mathew

Technology Enthusiast, with attention to detail, having global exposure. She is a self-motivated problem solver with experience analyzing data and deriving meaningful statistical information. Her goal is to be able to make a positive difference in peoples lives...
View all posts by Smitha Mathew >

Related Articles

Data Analysis
Injury Analysis of Soccer Players with Python
Machine Learning
Ames House Prices Predictions
Python
US Honey Production Analysis With Python (1998-2012)
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models
Python
EDA and machine learning Ames housing price prediction project

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    © 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application