NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship 🏆 Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release 🎉
Free Lesson
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See 🔥
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular 🔥 Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New 🎉 Generative AI for Finance New 🎉 Generative AI for Marketing New 🎉
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular 🔥 Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular 🔥 Data Science R: Machine Learning Designing and Implementing Production MLOps New 🎉 Natural Language Processing for Production (NLP) New 🎉
Find Inspiration
Get Course Recommendation Must Try 💎 An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release 🎉
Free Lessons
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See 🔥
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > Data Analysis Of Forest Fire In Montesinho Natural Park

Data Analysis Of Forest Fire In Montesinho Natural Park

Miaozhi Yu
Posted on Jul 25, 2016
The skills we demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Montesinho is a beautiful protected area located in the municipalities of Vinhais and Bragança, northeastern Portugal. Data from the map shows sections of the southern slopes of the Serra da Coroa (Sierra de la Culebra) fall within the park.

Data Analysis Of Forest Fire In Montesinho Natural Park

It is home to many different kinds of animals. Its biodiversity includes the Iberian wolf, roe deer, wild boar, Iberian lynx, common genet, red fox and European otter.

Data Analysis Of Forest Fire In Montesinho Natural Park

Data Analysis Of Forest Fire In Montesinho Natural Park

Picture4

What a disaster it would be if there were a forest fire!

Introduction

Today I am going to analyze the Forest Fire Predictors In Montesinho Natural Park. The forest fire data concerns burned areas of the forests in Montesinho Natural park due to forest fires. It was collected from January 2000 to December 2003 . It contains 517 instances

Variables

13 variables (1 dependent variable, 4 discrete attributes and 8 continuous attributes). These are the variables:

  • Response: area: Burned area of a forest fire (ha)
  • Predictors:
  • X: x-axis coordinate of the Montesinho park map: 1 to 9
  • Y: u-axis coordinate of the Montesinho park map: 2 to 9

Picture1

    • FFMC: A numerical rating of the moisture content of litter and other cured fine fuels: 18.7 to 96.2
    • DMC: A numerical rating of the average moisture content of loosely compacted organic layers and medium-size woody material: 1.1 to 291.3
    • DC: A numerical rating of the average moisture content of deep, compact, organic layers: 7.9 to 860.6
    • ISI: A numerical rating of the expected rate of fire spread: 0.0 to 56.10
    • Month: month of the year: 1 to 12
    • Day: day of the week: 1 to 7
    • Temp: temperature in Celsius degrees: 2.2 to 33.30
    • RH: relative humidity in %: 15.0 to 100
    • Wind: wind speed in km/h: 0.40 to 9.40
    • Rain: outside rain in mm/m2: 0.0 to 6.4

      Questions

      • Here we raise some questions:
        • How are the forest fires distributed in the park?
        • What are the significant variables to predict forest fires?
        • How are these variables related to the area of forest fires?
        • What can we suggest to tourists and the fire department?  Data

        • First, how are forest fires distributed in the park.

       

Capture

How large can a forest fire be? We did a summary on the burned down area data and categorized the area as 'small' if the area is under first quantile, as 'median' if the area is between first and third quantile, as 'large' if it if above the third quantile. So the summary is the following:

summary(mydata_new$area)

Min. 1st Qu.  Median Mean 3rd Qu. Max.

0.09 2.14 6.37   24.60   15.42 1091.00

Categorize area by the above information:

(0,2.14)  size of area = ‘small’

(2.14,15.42)  size of area = ‘median’

(15.42,1091.00) size of area = ‘large’

We did a boxplot of each category and found out that there are some outliers. After taking out the outliers, we zoom in and do a box plot for category median and small.

Rplot04         Rplot05

Second, we come to the question: which variables are the most significant? In order to achieve this goal, I did some statistical analysis. It turns out that the

fit = glm(log(area+1)~FFMC+DMC+DC+ISI+temp+RH+wind+rain,data=mydata_new,family=Gamma())

> summary(fit)

Call:

glm(formula = log(area + 1) ~ FFMC + DMC + DC + ISI + temp +

RH + wind + rain, family = Gamma(), data = mydata_new)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.11417 -0.52704 -0.08414 0.28686 1.39097

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.405e-01 6.776e-01 0.798 0.426

FFMC -2.129e-03 7.666e-03 -0.278 0.781

DMC -6.427e-04 3.960e-04 -1.623 0.106

DC 8.486e-05 1.036e-04 0.819 0.413

ISI 1.043e-02 6.706e-03 1.556 0.121

temp 7.194e-04 4.458e-03 0.161 0.872

RH 1.994e-03 1.420e-03 1.405 0.161

wind -1.043e-02 1.004e-02 -1.039 0.300

rain -1.099e-02 4.172e-02 -0.263 0.792

Based on the above analysis, DMC, ISI,RH are the three most significant variables, having critical values of 0.106,0.121 and 0.161 respectively.

RH:

Rplot08 Rplot07

ISI:

Rplot10 Rplot09

DMC:

Rplot12 Rplot11

What can we suggest to tourists and to the fire department? Summer and Fall are the seasons when there are the most tourists, thus we suggest tourists be more careful when using fire (camping, BBQ etc).The fire department should look closer at measurements of RH, ISI, DMC variables and prepare accordingly.

One of the drawbacks of this data set is that it does not record human activity which, I believe, does have a huge impact on the occurrence of forest fires.

Season

What times do forest fires happen the most?

Rplot06

Indeed, fall and summer are the most dangerous times due to high temperature and low relative humidity. Most importantly, people usually go camping and hiking in this two seasons, which brings potential danger.

Next steps:

  1. More closely analyze the relationship of variables to each other.
  2. Develop  a more precise model for predicting the area based on the variables we have now.

I will keep on improving this project. Thank you very much for reading this post. Please feel free to give any advice!

 

About Author

Miaozhi Yu

Miaozhi recently received her Master’s degree in Mathematics from New York University. Before that she received a Bachelor’s Degree in both Mathematics and Statistics with a minor in Physics from UIUC. Her research interests lie in random graphs...
View all posts by Miaozhi Yu >

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    © 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application