NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > Data Analysis of TV Series and Networks

Data Analysis of TV Series and Networks

Catherine Tang
Posted on May 3, 2020
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

OVERVIEW

Metacritic is considered a popular source of aggregated reviews on different forms of media. I used Scrapy to scrape their data reviews on television series having aired as far back as 1989 and ranging in various genres. The purpose of this is to find and analyze patterns of shows and ultimately the networks that invest in them. These patterns which can be implemented to contribute to other shows and a networkโ€™s success.

OBJECTIVES

Starting this project, there were three main questions I wanted to answer:

  1. Is there a pattern among popular* television shows?
  2. Is there a pattern among popular networks in terms of the shows that they acquire or invest in?
  3. Why is this important? Who is this important to?

Data

Popular Pattern Data

I decided to put a quantifiable description of โ€œpopularโ€. I went with those that have had at least 5 seasons because with the fast turn-over of series; if one is not making money, networks have no reservations cutting the show knowing they can easily replace that time slot.

Making sure I chose from different genres and from different networks, I use the following shows as an example of the patterns I found.

Terrible Twoโ€™s and Threeโ€™s

Data Analysis of TV Series and Networks Data Analysis of TV Series and Networks Data Analysis of TV Series and Networks

One of the striking patterns  in these examples is the slump from season 2 to season 3 and sometimes season 1 to season 2. It doesnโ€™t matter if the professional critics think that the season was actually better, it still falls short in meeting the expectations of the collective viewers.

Another interesting pattern after this slump is what I call โ€œredemption seasonโ€ where the show seems to listen to the viewers and somehow give them what they want. There are a number of factors that contribute to this, one of which is the fact that the peopleโ€™s expectation of the series is normalizing and their overall opinion on the series is normalized.

Data on "Quality over Quantity"

There are exceptions to the terrible twoโ€™s and threeโ€™s; some examples I found were the following:

 

One of the things that these shows have in common is the fact that they are controlled. They do not follow the conventional pattern of tv series of at least 15 episodes a season and the seasons premiering at the same month every year. I can deduce that they apply โ€œquality over quantityโ€ rule when producing episodes. Much to the audienceโ€™ frustrations that these shows take too long to air again, they are also left longing and anticipating for the what happens next.

This works in the showsโ€™ favor because not only are they able to properly come up with quality content, they are also able to keep the audienceโ€™ attention by being unpredictable.

Data on Popular Pattern Among Networks

With the rise in popularity of streaming services, I found it essential to see if some services or networks favor a particular genre which will make them standout to the customers who subscribe to them. Is one more interested in Drama rather than Action and Adventures? Or maybe they have a good diversity in terms of the genres to be able to care to more people who are not particularly drawn to one genre more than the other.

I chose to go with networks we are almost all familiar with along with some up and coming streaming websites who may one day become a staple in our smart tvโ€™s.

 

    

 

When in doubt, Laugh.

Itโ€™s easy to see that across the board all the popular networks have a healthy collection of comedy. HBO Netflix, NBC, and ABC are all almost identical in their spread of popular genres, Comedy and Drama being at the top. This pattern also followed by seemingly young streaming services such as Apple TV+ and Amazon Prime. Though they only have a number of shows airing, they still follow the same pattern of prioritizing comedy and drama over everything else.

WHY IS THIS IMPORTANT? WHO IS THIS IMPORTANT TO?

Industry Interest (Producers of a TV show)

This type of analysis can be useful for producers in planning out their series. Quality content is still preferred over exposure of the series. I can see how it might be tempting to churn out episode after episode and hope that some of them garner enough viewers to keep it running. But if this is done at the expense of the story line, then it might be detrimental to the reputation of the series and lose the interested fans your have already garnered.

If the conventional format is imperative to the series then the producers will have to be extra careful of the terrible twoโ€™s and threeโ€™s and make sure they are able to pay closer attention to the story line then. Maybe keep the redemption season flexible to add adjustments of viewersโ€™ reactions and opinions. That way, the show can bounce back from their slump and regain the viewers theyโ€™ve lost

Industry Interest (Network)

With the general demographic of these shows slowly switching to streaming services vs cable. There is also pressure on many networks to put up streaming services of their own. This means a repackaging of their shows in such a way that subscribers feel they are getting the best deal in terms of the quality and diversity of shows.

This is where this type of analysis can be useful when choosing their shows and how to acquire new ones. If older networks like NBC and HBO can follow their already successful plan and just migrate to a different platform, then that can prove to be profitable for them. Younger shows like Amazon Prime and Apple TV+ have already started well by following this distribution of genres. It may be beneficial for them that there were other networks who have tried and tested this pattern before they invest significant capital in their transition to online streaming services.

 

 

 

About Author

Catherine Tang

View all posts by Catherine Tang >

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application