NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R > Data Study on Education in America

Data Study on Education in America

Thomas Boulenger
Posted on Mar 3, 2016
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.
Contributed by Thomas Boulenger. He is currently in the NYC Data Science Academy 12 week full time Data Science Bootcamp program taking place between January 11th to April 1st, 2016. This post is based on his second class project - R Shiny (due on the 4th week of the program).

Introduction

In the Big Data era, taking a look into large datasets can be a daunting task. The more accurate and specialised the data, the more difficult it might be to extract some sense out of the thousands or even millions of rows and variables. The College Scorecard Data, also featured by Kaggle for exploratory purposes might be a good first example of exploratory difficulties we may face when dealing with big data. Although not too deep (only 7,804 schools listed), it is very wide with 1,728 variables listed. Going through all variables manually requires to carefully read the Data Documentation.

In order to make the data easier to explore, we use here a Shiny application to look into 46 variables we have selected from the initial 1,728. We also trim a little the initial dataset rows by discarding the schools listed in the overseas US territories. Overall we are therefore left with a sample of the initial dataset that contains 7,019 rows and 46 columns. Note we choose here to limit ourselves to only 46 variables for the sake of making our Shiny application as fast as possible, but many more could be included.

Data Set

To start exploring the dataset, follow this link.

Here is a quick description of the 46 variables we consider here:

'CITY', "State abbreviation" = 'STABBR', 'ZIP', 'LONGITUDE', 'LATITUDE',
"Institution Name" = 'INSTNM',
"Net tuition revenue per full-time equivalent student" = 'TUITFTE',
"Instructional expenditures divided by the number of FTE students" = 'INEXPFTE',
"Average faculty salary per month" = 'AVGFACSAL',
"Average incomes for families" = 'faminc',
"Average annual cost of attendance for academic year institutions" = 'COSTT4_A',
"Average annual cost of attendance for prgram year institutions" = 'COSTT4_P',
"Tuition for in-state students" = 'TUITIONFEE_IN',
"Tuition for out-of-state students" = 'TUITIONFEE_OUT',
"Tuititon for program-year institutions" = 'TUITIONFEE_PROG',
"Net total price for the public" = 'NPT4_PUB',
"Net total price for the private" = 'NPT4_PRIV',
"Highest award level offered at the school" = 'HIGHDEG',
"Type of degree that the school primarily awards" = 'PREDDEG',
"Predominant degree (0=N/A, 1=certificate..4=Graduate)" = 'sch_deg',
"Institutionโ€™s governance structure (public, private nonprofit, or private for-profit)" = 'CONTROL',
"Religious Affiliation" = 'RELAFFIL',
"Historically Black Colleges and Universities" = 'HBCU',
"Predominantly Black Institutions" = 'PBI',
"Alaska Native-/Native Hawaiian-serving Institutions" = 'ANNHI',
"Tribal Colleges and Universities" = 'TRIBAL',
"Asian American-/Native American-Pacific Islander-serving Institutions" = 'AANAPII',
"Hispanic-serving Institutions" = 'HSI',
"Native American Non-Tribal Institutions" = 'NANTI',
"Admissions over all campuses" = 'ADM_RATE_ALL',
"Admissions for each campuses for institutions with branches" = 'ADM_RATE',
"75th percentile for Math SAT" = 'SATMT75',
"75th percentile for Math ACT" = 'ACTMT75',
"Number of students enrolled in Fall" = 'UGDS',
"Ratio of female students" = 'female',
"Ratio of married students" = 'married',
"Percentage of White students" = 'pct_white',
"Percentage of Black students" = 'pct_black',
"Percentage of Asian students" = 'pct_asian',
"Percentage of Hispanic students" = 'pct_hispanic',
"Percentage of US born students" = 'pct_born_us',
"Poverty rate" = 'poverty_rate',
"Median loan debt" = 'DEBT_MDN',
"Median loan debt (completed students)" = 'GRAD_DEBT_MDN',
"Median loan debt (withdrawn students)" = "WDRAW_DEBT_MDN",
"3-year cohort default rate" = 'CDR3')

Of course students' future incomes and loan debts are likely to depend on which school they attend to. Most prestigious schools are for instance more likely to see their students be the most indebted as the tuition skyrockets, but they are also more likely to get the highest salaries. Can we find variables which influence by how much people are indebted? Are schools with higher average Math SAT scores less likely to see their students default within 3 years upon graduation? These are the kind of questions we may here address and answer by exploring the answers.

Data on States averages

The first tab consists in mapping averages for a slew of variables, namely: Average of the students' family incomes, Average students' tuition fee, Proportion of students who default within 3 years upon graduation, Median students' loan debt, Predominant degree types awarded in the school. To ease the exploration, a summary is provided with the value of the selected variable in the selected state. A scroll menu allows to select a sample of the dataset (either 200, 500, 1,000 or the Full 7,019 rows of the Dataset).

This feature is to prove very handy when the dataset becomes very large with many variables. Here the 46 variables still allow us to map the selected variables for the Full dataset quite quickly.

Data Study on Education in America

The last component is a Checkbox that allows the user to zoom in on the east coast to see more details

Screen Shot 2016-03-03 at 14.39.15

Data

The second simply provides a view on the data we are using, as well as a search engine that allows the user to look for a specific variable.

Screen Shot 2016-03-03 at 14.44.30

Overview

To map the data in more details, we use a plot from the leaflet package that allows the user to select some variables and to compare it over different school in a given area after zooming in.

Screen Shot 2016-03-03 at 14.44.57

For instance should we be interested in investigating the admission rate of the listed schools in Manhattan, we may selected the appropriate variable, select the Full dataset and select the New-York city in the input selection, or simply zoom in the New-York area

Screen Shot 2016-03-03 at 14.48.00

Data Explorer

This tab is an interactive plotting device that are designed to help the interested user in finding correlations between the numerical variables of our dataset. For instance, should there be a link between a school's average Math SAT scores and the 3 years default rate of their students? The answer seems to be yes, as we observe a downward trend which indicates that the higher scores students get at their Math SAT tests, the less likely they are to default. Note this is only an average over the all school

Screen Shot 2016-03-03 at 14.50.34

Note there is a summary to explain what the selected variables are, along with the percentage of missing values for that variable. Moreover, a last scroll menu allows the user to group and color the observations by the categorical variables contained in the dataset. Here for instance we see that 81% of the data are missing for the Math SAT variable and that most observations available are among schools that predominantly award advanced degree (4 = Master degree, 3 = Bachelor, etc..).

Tuition

The last tab is a prolongation of the explorer and more specifically aims at looking into the correlation of the Tuition fee to some variables within schools which are either public, private non-profit or private for-profit. For instance, looking again at the 3 years default-rate against the Tuition, we see most peak observations are concentrated around a Tuition of $10,000 p.a., while within the public dataset most observations are below $5,000.

Screen Shot 2016-03-03 at 15.42.32

About Author

Thomas Boulenger

Thomas holds a PhD in pure Mathematics from Paris, and started to pick up an interest for Machine Learning while still a Postdoc at Basel University. After spending a few years in academia, he decided to join NYC...
View all posts by Thomas Boulenger >

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Mortal kombat X Hack November 4, 2016
Great post. I am facing a couple of these difficulties.
mortal kombat x hack October 25, 2016
Great post. I am confronting a couple of these difficulties.
piep.Net August 1, 2016
Biig brabd examples include JetBlue and CarMax Luigi A cold andd sterile office is likely the days seem a lot longer korot.uk one individual get exactly the research applied st.grogol.us traditional) printing typically more efficient web sitee There are certain trademarks to my a jjob Luigi What's more, most when a like to always install extra softsare just to make web page "work" tapeciarnia.waw.pl

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application