NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R > Data Visualization on Attributes of Dating Success

Data Visualization on Attributes of Dating Success

Raymond Liang
Posted on Oct 20, 2018
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Background:

For some people, dating might be intuitive and even second nature, but for others the idea of landing a date might appear to be a somewhat convoluted topic. Using a data set relating to observations collected from speed dating events, we hope to provide clarity into the dating situation via visualizations and statistical analyses.

Methodology:

A dataset provided on Kaggle was used for the visualizations of our Shiny Dashboard. The raw data included many NA values, so we needed a method to clean them up so that various analyses can be performed later. To tackle the missing values, we imputed those values from the mean of the existing data in their corresponding columns.

Furthermore, the final dataset that ended up being used was subsetted to a smaller number of columns of the raw data. The Kaggle dataset can be found here and the subsetted dataset is posted on my Github page with the name of "SD_clean.csv". The actual app itself is also hosted on shinyapps.io.

In addition to the missing values, there were also columns where numeric values represented certain categories. As such, they needed to be transposed back to the actual categories values so the visualizations can be more meaningful (eg, changing 0 and 1 from gender column to their respective string equivalent of 'Female' and 'Male' ).

Data:

Gender

Data Visualization on Attributes of Dating Success

Upon arriving at the dashboard, a user has the option to select a gender dropdown menu that he/she would like to inspect the data for. If 'Female' was selected, the dashboard will update the visualizations to show aggregated data from female responses in our dataset.

Activities

Data Visualization on Attributes of Dating Success

On the activities tab, value boxes were placed to rank the top 3 activities from the average scores given by each gender. We can see that females ranked 'Movies', 'Dining' and 'Music' the highest on average giving them respective scores of 8.15, 8.14 and 8.05.  Males also enjoyed the same activities on average, but ranked 'Music' highest, followed by 'Movies' then 'Dining'.

Average Scores

A horizontal bar chart was also created to provide more details on the average scores given to additional activities. This chart helps to answer the question of what kind of activities to engage in on dates or on the flipside, what kind of activities one might want to avoid on dates. For example, we can see from our average male responses that 'Sports' is ranked 5th place, but for females the same category ranks 5th from last.

 

Data Visualization on Attributes of Dating Success

Frequency on Outdoor Activities vs Dates

Next, we want to visualize the relationships between the frequency of one who engages in outdoor activities vs the frequency of one who goes out on dates. A facetted scatterplot by gender was used to produce this visualization. The pattern is clear in both genders that the more outgoing a person is, the more dates one gets (notice that the scale ranges represents categorical values ranging from 1 being the most frequent to 7 being the least frequent).

 

Observations

More granular details can be found on the "details" tab with a similar scatter plot, but grouped by careers. Here, we have selected females who work in the financial industry as an example, and we can get a sense of how outgoing they are and how frequent they go on dates.

If we were to categorize the scale by grouping 1-3 as 'frequent' and 4-7 as 'not frequent', we can see that business women are quite outgoing (the scale does not even go beyond 3). However, they do not date very frequently as we can see from the density distribution on the right hand side of the graph. Most responses tends to be 4-7 when asked about how often they go on dates.

 

Lastly, on the calculator tab, a user has the option to rate themselves for various attributes by selecting scores of 1-10  from a drop-down menu. Clicking the calculate button will run a predict function of the independent variables against a logistic regression model. From our dataset, we chose the response variable "decision" which is defined as whether or not a participant of the speed dating event has chosen to date a particular prospect.

The independent variables that were chosen were attributes of a specific prospect such as "Attractiveness, Sincerity, Intellect, Fun, Ambitious and Shared Interest/Hobbies". From here, the data was separated by gender and further subsetted to test and training data with a ratio of 50:50 to validate the model. Upon clicking the calculate button, the user can also observe a spider chart based on their attribute inputs.

Limitations and caveats:

Due to the limitations in the dataset, the visualizations in the dashboard can only produce results for 'male' and 'female'. In today's world, it is important to be as inclusive as possible, and it would be great to have an 'other' selection for sexual preference. Additionally, the model created with logistic regression might include bias, as the scores given to the attributes by the speed dating participants are subjective to their own personal preferences.

Given more time and resources, I would also like to incorporate analyses pertaining to a participant's onsite result vs offsite results (eg, followup questionaires) to compare if the event has any effect on the responses they give.


About Author

Raymond Liang

Raymond Liang is an aspiring data scientist currently studying with the NYC Data Science Academy. Through the 12 week intensive course, Raymond is able to apply advanced data manipulation and visualization techniques using languages including, but not limited...
View all posts by Raymond Liang >

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Raymond Liang October 23, 2018
Glad you enjoyed the post, Bernado! I've updated the post to include a link to the app: https://rayl1ang.shinyapps.io/shinySpeedDating/ Thanks for reading! Ray
Bernardo Lares October 22, 2018
Hello. Really enjoyed this post. Wanted to do something quite similar since I saw Black Mirror last year! I've got a quick suggestion: you could host this app so we readers can play with it, for free, with MatrixDS: https://community.platform.matrixds.com/ It's a Data Scientists community and they offer 4 tools (Rstudio, Shiny, Jupyter...) 24/7 for free to its users. I personally use it for my shiny app on DJs incomes per hour: https://soloparadjs.com/calculadora-dj/ Glad you shared, Keep in touch BL PS: You are welcome: https://community-5a3184d2758e070001f7a9a0-5bc7a423c6f00267bda83fb1.platform.matrixds.com/Dating/ (improved code a bit)

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application