NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Machine Learning > Data Visualization on the Effect of Home Renovation Price

Data Visualization on the Effect of Home Renovation Price

Hong Chan Kim and Bruce Alphenaar
Posted on Dec 6, 2020
The skills I demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Link to the GitHub repo

Background

Ames, Iowa, home to Iowa State University ("the Cyclones") boasts  an annually growing population over 67,000. The city ranks fairly high in CNNMoney's Best Places to Live consistently. Those seeking a home in their price range in that city can look through the data distribution of homes and price range around 27 neighborhoods in Ames shown in the charts below: Data Visualization on the Effect of Home Renovation Price

Goal

Home price is driven by variables that are not only idiosyncratic to the home itself but also by exogenous factors like the broader economy. The goal of this project is to determine whether it makes sense for a homeowner to renovate his/her home in order to improve the sales price by utilizing various machine learning techniques and a dataset of over 2,600 homes sold between 2006-2010 with 80+ features.

Data Analysis - Feature Selection

Multipronged approach was taken to reduce the number of features into 17 for the multiple linear regression model that fit log of home price and into 13 for the multiple linear regression model that fit home price per gross living area. 

  • Qualitative EDA (Exploratory Data Analysis): Some features could be eliminated quickly because of extreme class imbalance, lack of relationship vs. the target, and/or too many missing values.
  • Comparing p-values from f_regression and mutual information scores: Top 25 features were extracted using both methods. There was a healthy overlap between the two methods, and all 25 features were statistically significant. 
  • Random forest regressor feature importance: The random forest with the best hyperparameters from GridSearchCV was used for feature selection. Top 25 features were extracted, but the significance dropped off quickly after the top 5 features
  • Lasso penalization: Lasso penalized regression models with different alpha values were used to eliminate features with coefficients that dropped off to 0 faster than others
  • Multicollinearity analysis: Multiple linear regression model with one feature as a label and all other features as predictors was fitted, and features that were highly correlated with other features were dropped.      

In addition, two new features (nn5meansaleprice, nn5medsaleprice) were engineered to improve the model fit. Given the latitude and longitude of each house, distance between each pair of homes was computed and for each home, mean and median of log of price of nearest 5 neighbors were computed. A similar rationale was used to engineer nn5meanprice and nn5medprice, which are nearest 5 neighbors' mean and median price per area, respectively.     

Data Visualization on the Effect of Home Renovation Price

Data Analysis - Multiple Linear Regression

The multiple linear regression model for log of price vs. final 17 features is shown below.

Data Visualization on the Effect of Home Renovation Price

The model had an adjusted R2 of 0.854. Interestingly however, using only the 4 most important features (YearBuilt, TotalBsmtSF, GrLivArea, nn5meansaleprice) yielded a model with adjusted R2 of 0.829. Other less important features, such as KitchenQual and BsmtQual, had limited impact on log of home price. This suggests that there isn't much an owner can do to maximize home prices in Ames, i.e., home prices are heavily dependent on intrinsic characteristics of the homes. This is a clear contrast to the visible increase in price by improving kitchen quality or exterior quality as shown below.

These contradictory results may be explained by the influence of living area as a variable. The multiple linear regression model for price per area vs. final 13 features is shown below.

Although R2 of 0.64 is lower than the prior model, less important features from the prior model, such as KitchenQual, are much more significant. For example, improving kitchen quality to excellent improves price per area by ~$12.50/sq. ft.

Conclusion

Raw data of home prices in Ames, Iowa with over 2600 samples and 80 features was polished to fit a multiple linear regression model and determine whether an owner should renovate his/her home before selling. The variables that contribute the most to home prices are intrinsic in nature (year built, living area, price of nearest neighbors, etc.) and therefore are outside the homeowners' control. If the owner still were to renovate, improving kitchen quality will have the greatest impact on price per area.      

Appendix: Feature Description

Multiple Linear Regression for Log of Price

  • YearBuilt: Original construction date
  • TotalBsmtSF: Total sq. ft. of basement area
  • GrLivArea: Above grade (ground) living area sq. ft.
  • nn5meansaleprice: Log of mean home price of 5 nearest neighbors
  • MSSubClass: Whether a home is a 2-story and 1946 or newer (1 = True)
  • Neighborhood: Whether a home is in Northridge Height (1 = True) 
  • ExterQual: Whether the external material quality is good (1 = True)
  • Foundation: Whether the foundation is made of cinder block (1 = True)
  • BsmtQual: Whether the basement height is 100 inches or higher (1 = True)
  • HeatingQC: Whether the heating quality is typical (1 = True)
  • FullBath: Number of full bathrooms above grade
  • TotRmsAbvGrd: Total rooms above grade (not including bathrooms)
  • KitchenQual: Whether kitchen quality is good (1 = True)
  • Fireplaces: Number of fireplaces
  • GarageType: Whether the garage is detached from home (1 = True)
  • GarageFinish: Whether the garage interior is finished (1 = True)
  • GarageCars: Size of garage in car capacity

Multiple Linear Regression for Price Per Area

  • MSSubClass: Whether a home is a 1.5-story and finished (1 = True)
  • HouseStyle: Whether a home is a 1.5-story and 2nd floor is finished (1 = True)
  • Neighborhood: Whether a home is in Northridge Height (1 = True)
  • YearBuilt: Original construction date
  • ExterQual: Whether the external material quality is good (1 = True)
  • Foundation: Whether the foundation is made of brick and tile (1 = True)
  • BsmtQual: Whether the basement is 100 in or higher (1 = True)
  • BsmtFinSF1: Type 1 finished basement sq. ft.
  • BsmtFullBath: Number of full bathrooms in the basement
  • BedroomAbvGr: Bedrooms above grade (does not include basement)
  • KitchenQual: Whether kitchen quality is excellent (1 = True)
  • GarageArea: Size of garage in sq. ft. 
  • nn5meanprice: Mean price per area of 5 nearest neighbors

About Authors

Hong Chan Kim

Hong is a data science fellow at New York City Data Science Academy (NYCDSA) with expected graduation date of December 2020. His domain expertise lies in the US equity market, where he spent 7 years in the hedge...
View all posts by Hong Chan Kim >

Bruce Alphenaar

View all posts by Bruce Alphenaar >

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application