NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R Shiny > Data Visualizing Neighborhood Changes in NYC

Data Visualizing Neighborhood Changes in NYC

Kyle D. Weber
Posted on Oct 21, 2019
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Introduction:

For businesses, governmental organizations, and non-profits working in New York City today, understanding the data on the recent economic and demographic history of the neighborhoods in which these organizations work and the future trajectory of these neighborhoods is crucial to organizational strategy.

For a business looking to open in East Harlem, for example, learning about how the number of people employed or average income of the neighborhood has changed in the last few years might provide some insights into what goods and services new residents in the area might be most interested in purchasing.  If the business has a specific location in mind, they might be particularly interested in how these variables have changed at the ZIP code level.

Similarly, for a non-profit group focused on anti-poverty efforts operating out Forest Hills, having detailed information about which industries lost jobs, how the population has changed, or how the distribution of income has changed over the last few years would be valuable in developing strategy.

Data Limitations

While these variables are obviously incredibly useful, there are two major limitations that might prevent companies from using this information to guide their strategic decisions. 

First, the economic and demographic series described above are only released after a significant lag, making it difficult for companies to gain access to information about these variables that has been updated in the last year.  Second, this information is not necessarily available in the smallest geographies due to privacy concerns, meaning that individuals looking to examine what economic changes are occurring in a specific neighborhood or block will not be able to use most economic and demographic time series provided from the US government for this purpose. 

To supplement the other data series that I collected for different NYC ZIP codes, I gathered information about a proxy for the economic conditions of a neighborhood:  the number of permits for jobs involving new buildings, demolitions, and building conversions (changes that affect the basic uses of the building) that occur in a specific geographic area. 

Given the high cost of NYC unionized construction labor, it is likely that landowners engaged in these products would only do so if they believed that economic conditions in the neighborhood in the future would justify additional construction expenditure today.  (This is true even of the expenditures on demolitions, since demolitions in NYC are generally done in anticipation of a new construction project on the same site).  Thus, it would be reasonable to expect indices of permitting activity to be associated with local economic activity, with building permits being associated with higher future expected population and income.

Goal 

The goal of my project is twofold.  First, I want to directly graph and visualize (a) the economic variables that would be directly interesting to local organizations like income, number of businesses, and number of employees and (b) the construction variables that I believe are proxies for future economic development and growth.  Second, I want to build data sets that can be used for the next stage of the project, which is to directly test the relationship between building permits and measured economic activity to examine whether this data can be used to predict future changes in economic activity.  By visualizing these predictions, I would give local organizations another source of information that could be used when making decisions.

Data Used:

To produce the choropleth maps and time series graphs that are featured in my Shiny app, I used three primary sources of data.

First, I used permit information that was published by the NYC Department of Buildings.  It can be found at this link. It was cleaned by getting rid of extraneous categorical information, eliminating permits that were issued for minor construction jobs or for construction jobs that did not seem to be done to increase the value of the building.

Second, I use information about the number of business establishments in different industries by ZIP Code, employment by those establishments, and the total amount paid in wages (in real terms) by those businesses from the Census Bureau's County Business Patterns data.  This data set can be found at this link.

Finally, I used data from the National Bureau of Economic Research (NBER) about the characteristics of tax returns filed by households with an address in each New York City ZIP code.  The main variable of interest is the distribution of households in different taxable income categories in different NYC ZIP Codes over time.  Information from the NBER about this data set can be found at this link.

App Features:

The features of my app can be divided into two parts.  First, my app contains an interactive Leaflet module that generates choropleths that are shaded based on a user's custom input:  their construction variable of interest, the geography that they want to examine, whether residential or non-residential permits are exclusively included in the graphs, and whether shading is based on quantiles or raw values.

Second, my app contains a series of tabs that show -- based on a user's selected ZIP code -- the following variables graphed the years 2006 to 2016:

  • the distribution of household income for households located in a selected ZIP code by year
  • the total number of businesses in a given ZIP code and industry (with the industry being selected by the user from a list of eleven categories) by year
  • the total number of large businesses (>500 employees) in a given ZIP code and industry (with the industry being selected by the user from a list of eleven categories) by year
  • the total number of employees and total payroll (converted to 2015 dollars) reported by businesses located in a specific ZIP code by year.

Next Steps:

The next step in my project is to build a machine learning model that would examine whether changes in permitting activity in New York City can be used to predict future changes in income, population, or the number of businesses in an area.  Since I have data from the 1980s to the early 2000s that I excluded from my Shiny app to help with load times, I have a rich data set to use to examine whether there is any predictive power of the information contained in the permitting data set. 

I am particularly interested in regularized regression for this purpose because the permitting activity data set contains a huge number of variables that might have some predictive power but all of which could not feasibly be included in any model.  Moreover, since I am working with such a long data series, I am excited about the possibility of examining the forecasting performance of different modelling techniques by fitting those models using a subset of my data and then comparing the out-of-sample forecasting performance of each of these models. 

 

About Author

Kyle D. Weber

Kyle D. Weber is currently training at the NYC Data Science Academy to gain additional proficiency with machine learning techniques, SQL, Python, and database management tools such as Spark, Hadoop, and Hive. He holds a Masters of Philosophy...
View all posts by Kyle D. Weber >

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application