NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R > Data Analysis on Covid 19: Flattening the Curve?

Data Analysis on Covid 19: Flattening the Curve?

Soham Mishra
Posted on May 2, 2020
The skills I demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

LinkedIn | Github

Inspiration and Goals

It goes without saying, that Covid-19 has rocked the world as hard as any event in modern human history, and because of this, I have been trying my best to keep track of the ever evolving situation in our country. During this time, I noticed many of the news networks focussing on the total number of national cases. As the numbers continued to rise, they started to lose meaning, particularly for individuals in states that have a lower case count. Furthermore, in mid-March I left New York City and went to Phoenix, Arizona to stay with my family. I was shocked at the difference in mentalities for people in each of these areas; in NYC, it seemed as though the world was ending, while in Phoenix, it seemed to be just business as usual. 

Even though the situation in Arizona rapidly deteriorated since my arrival, noticing these differences in human behavior got me asking questions. Was the situation really that different from place to place? Does the national case count accurately describe what is happening across America? If not, how can I accurately tell what is going on locally?

 

With these questions in mind, I decided to create a tool that people could use to track Covid-19, more specifically at the state level. The goal of this R Shiny app was three fold: 

  1. Personalization: I wanted the app to be focussed on state and local areas. Users would be able to visualize the coronavirus situation where they are. 
  2. Contextualization: The user would be able to compare between multiple different states. By providing relativity, the user can better understand the scope of the crisis in different regions.
  3. Simplicity: The app is smooth, functional, and easy to use so that the user can quickly get the information they need.

 

The Data

For this project I chose to use two datasets operated and updated daily by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). The first dataset I used contained state level data on a variety of variables including total case count, mortality rate, and testing rate. I used this data set to construct the interactive US geochart on the first page using GoogleVis. By hovering over the desired state, users can view up to date information on the number of confirmed cases.




The second data set I used contained time series data for every county in the United States going back to January. For the purpose of the project, I filtered the dates to start on March 1, because up till this point, many counties were not reporting data. This data was then manipulated in different ways to construct the remaining visuals within the State Level Analysis tab.

 

The Features

In addition to the National Overview on the first page, the bulk of the app functionality comes within the State Level Analysis tab. In the first subtab, the user is able to select a state to display the daily new cases. On the graph itself, the underlying bar chart shows the exact number of daily new cases reported each day, while the line shows the 5 day moving average. This feature was implemented due to the large variability in daily case reporting, and in turn creates a smooth representation of the growth trajectory. Additionally, the user has the option to add multiple states to the graph for comparison, while also adjusting the date slider to see how the trajectory has changed over time.  




In the second tab, the user is able to select a state, and then view county level data for that state through a density map, which gives even more granular data into what areas are most impacted by coronavirus. One of my favorite features in the density map is the ability to change the date slider, as this really enables you to visualize how the county level situation evolved over time. From a usability standpoint, this can give the user insights into if their county is at risk, or doing a good job stopping the spread. Additionally, it provides warning if for example neighboring counties start to show heightened case counts. 




Total Case Count

The two remaining tabs are designed to show total case count on both a linear scale and logarithmic scale. By using these two tabs in conjunction, the user can visualize whether or not the state is โ€œflattening the curveโ€. Similarly to the Growth tab, users are also able to select multiple states to compare, while also adjusting the data slider to give them the time period they are interested in. At the time of writing this, a few states have started loosening their social distancing policies and opening businesses. Moving forward, I think it will be interesting to use these graphs to monitor whether or not there is a โ€œre-steepeningโ€ of the curve in these states.

 

Going Forward

While the app is functional, there are more features that I would like to add to make the app even more useful. Firstly, I would like to add a โ€œRecent Newsโ€ tab, that allowed users to input their location, and then the app gave them recent Covid-19 news for their area. This would future help to get the most targeted information to users anywhere in the country. Secondly, I think creating more comparables within the app, to show coronavirus relative to something that people understand, would be helpful in changing human behavior because it would help people understand the data. For example, I could integrate car accident or seasonal flu data, to then compare Covid-19 mortality rate with these in different areas. I think this would open peoples eyes into how dangerous the spread of the virus actually is, and what they can expect within their local communities. 

 

About Author

Soham Mishra

View all posts by Soham Mishra >

Related Articles

Data Analysis
Car Sales Report R Shiny App
R Shiny
Forecasting NY State Tax Credits: R Shiny App for Businesses
R Shiny
Behind the Curtains: Insights into NYC Broadway Shows
R
R Shiny Shows Decline in Even Strongest Democracies
R Shiny
R Shiny: Downstream Processing Dashboard

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application