NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Machine Learning > Using Data to Predict House Price with Machine Learning

Using Data to Predict House Price with Machine Learning

Chaitali Majumder
Posted on Mar 7, 2021

Data Science Introduction

Purchasing a new house is always a big decision! Is it the location ? Is it the overall quality of the house ? Is it the size ? Could it be sold at a good price in future? Moreover, economic growth plays an important role as housing demand is often seen as elastic in terms of income, leading to an increase in revenues for households. In this text we will use data to predict house price with machine learning.

Undoubtedly it is a  tough call to consider which features should be of most importance. To ease this decision-making, in todayโ€™s world, Machine Learning allows an entrepreneur  on forecasting the house price with a maximum accuracy of market trend and building model of the historical dataset on โ€˜what happened and whyโ€™ to predict โ€˜What is going to happenโ€™.

In this blog, a step-by-step technical approach have  been described for predicting house sale price for a Kaggle data-set of Ames, Iowa. The project endeavors to extensive data analysis and implementation of different machine learning techniques in python for having the best model with most important features of a house on insight of both business value and realistic perspective. The dataset consists of 79 different features for 1460 houses in Ames which can be used as training data to predict the sale price of another 1459 test data set of machine learning model.

Process Steps

Using Data to Predict House Price with Machine Learning

The entire process of machine learning can be divided in 4 main steps to get the desired prediction.

  • Get Data โ€“ Data can be collected from the source in this step for exploratory data analysis and visualization for understanding the current/historic data and determine the next step.
  • Data Pre-Processing โ€“ Pre-Processing aka data wrangling is the technique of cleaning and transforming the raw data (which can be incomplete and inconsistent) to a proper format to be used for modeling.
  • Model Evaluation โ€“ Different machine learning algorithms can be used and evaluated in this step to measure the accuracy and other performance metrics.
  • Prediction โ€“ Depending on choice of the best model, prediction is done.

Exploratory Data Analysis

This is the way of analyzing, visualizing, summarizing and interpreting the dataset to achieve some insights on statistical measure and validate the hypothesis.

For this dataset, the first step of EDA is to check the distribution of Sale Price on train data-set. Itโ€™s observed in the histogram that the data is rightly skewed  with a skewness of 1.88 and kurtosis as 6.53 which needs a log-transformation to correct the distribution in feature-engineering step.

Using Data to Predict House Price with Machine Learning

In the next step, further data analysis done to reveal that the percentage of houses built before 1980 is 58.7% and percentage of houses remodeled is 47.8% as Ames is an old place.

Using Data to Predict House Price with Machine Learning

Correlation Analysis - Correlation analysis helps to identify top features highly correlated with Sale Price. Multicollinearity found as well for couple of features which needs to be handled in feature engineering step to get best model.

Using Data to Predict House Price with Machine Learning

Outlier Analysis - Couple of outliers found for Living Area, Lot Area and neighborhood which can be removed in pre-processing. Since the train data does not contain school district information and crime rate, neighborhood is an important factor, implying above factors. It's observed that the variance of an expensive neighborhood is typically higher, which explains the skewness of the sales price density as well.

Using Data to Predict House Price with Machine Learning

Pre-Processing

Missing Data Handling  - Overall, 2.68% data is missing in the training data

Using Data to Predict House Price with Machine Learning

Below are the steps done for missing data

  • As PoolQC, MiscFeature, Alley and Fence features have more than 90% data missing, dropped these features as there will not be any impact.
  • LotFrontage missing values imputed based on median value of neighborhood LotFrontage.
  • The features having many missing data but having correlation with sale-price less than 0.5, have been dropped as there will not be impact.
  • For some numerical predictors, missing values are imputed as mean value or 0 based on analysis. For some categorical predictors, missing values are imputed as NA or the value mostly used.

Feature Selection/Engineering - This step identifies the selective features needed and having most significance with the target feature.

  • Log transformation applied to SalePrice to correct the skewness.
  • 4 new features created to get more business importance from usability standpoint โ€“ TotalSF, Total_Bathrooms, Years_SinceRemodel,HasGarage.
  • Some numeric predictors dropped to avoid multicollinearity based on correlation analysis. Outliers removed from the training data accordingly.
  • Predictors having negative correlation with Sale Price โ€“ dropped.
  • Categorical predictors dummified to use in regression process and some of them dropped if only one value is dominating.

Model Evaluation

Model selection and evaluation is a critical step of any machine learning project as identifying the pattern and applying the correct algorithm is not a very easy process. Machine Learning provides multiple number of models  to generalize it to the unseen data from the same population and measuring the performance.

Along with meeting the business objective, the model should take care of accuracy, execution time, complexity and scalability as well to be considered as best model. Sometimes size of training data set and numbers of predictor features can be decision-making  criteria for model selection. RMSE (Root Mean Square Error) is the performance metrics for this project.

For this particular dataset, it's observed to have linearity and normal distribution of Sale Price data, which directs to evaluate the linear regression model first. To reduce the overfitting issue, both Ridge and Lasso also comes under consideration for evaluation. To check whether the non-linear models outperform, Random Forest and XGBoost also added. Firstly to split train-test data set, 10-fold cross validation method applied which shows an interesting statistics as below:

Using Data to Predict House Price with Machine Learning

Performance metrics of RMSE resulted to be very close for Ridge, Random Forest and XGBoost. As Random Forest took significant time to get the result, further analysis is done between Ridge and XGBoost for the best model selection.

For Ridge, by introducing an additional hyperparameter lambda, a fine-tuned penalized regression trades off a slight increase of biases for a significant drop of its model variance, which results in an improved accuracy. With tuning the hyperparameter setting alpha as .01, the best RMSE and R-Square value received for this model in training data which reduces the risk of overfitting to a great extent.

Using Data to Predict House Price with Machine Learning

Bur exploring the feature-importance of the ridge model, it is not convincing that most important feature of this model will  meet the business value.

As a next step, XGBoost is analyzed thoroughly through grid search to get the best parameter value of max depth and n_estimators. XGBoost is a tree based ensemble machine learning algorithm which is a scalable machine learning system for tree boosting. XGBoost stands for Extreme Gradient Boosting.

It uses second order partial derivatives as approximation of loss function to provide more information about the direction of the gradient and the way to get to the minimum of the loss function. That algorithm smoothens the final learnt weights and thus avoids overfitting. Grid search resulted best max_depth as 3 and n_estimators as 100. Using these values as parameter, the best model performance achieved as RMSE of .0616 and R-Square as .97. The feature-importance bar chart also resulted very realistic in terms of business features of a house sale.

In realistic way, it's completely understood and accepted that Car Space in Garage, Overall Quality of the house, Total Square foot, total bathroom numbers, remodeled, neighborhood convenient to business places, advantage of railway commute - all features are significant in a house sale price for a homeowner which have been predicted by XGBoost efficiently with highest speed. Comparing the selected model behavior and performances , XGBoost is chosen as the best model for training the data set because of :

  • Lowest RMSE
  • Highest R-square
  • Best computation speed
  • Realistic Feature Importance

Prediction

XGBoost Model applied to test data for sale price prediction of 1459 houses and accordingly predicted sale prices are listed. Here is a snap-shot.

The histogram of predicted sale price of the 1459 houses can clearly show how effectively the prediction is done. Average predicted sale price is $178653.35, which maintains the same trend of train data.

Conclusion - In summary, it's aimed at answering two main questions in this project: will the tree-based model outperform the regularized linear model on predicting house price of the given dataset? The result shows though Ridge accuracy is good but the significant house features are not satisfactory like XGBoost model. The XGBoost model has the potential to perfectly predict the sale price having most important features identified  for a homeowners to look to add value of their homes.

For Python Code Reference, please click here .

The skills I demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

 

About Author

Chaitali Majumder

Decisive, analytical-minded Data Scientist and Business Leader with a proven track record of 10+ years of work experience in Business Process Management project implementations.
View all posts by Chaitali Majumder >

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application