NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R > NBA Lineup Data

NBA Lineup Data

Tom Walsh
Posted on Jan 31, 2016

A preliminary visual investigation using data of the relationship between the performance of NBA lineups and the players within them.

Getting NBA Data

The pages at stats.nba.com are backed by a great set of json APIs, making it easy to work with their data. They have an extensive stats for lineups, players, and a lot more.

Some Libraries Weโ€™ll Need

library(rjson)
library(dplyr)

Getting data from stats.nba.com into R

I used the rjson library to download the json and convert it into an R data frame. The following helper function, given a url, the number of columns, and a list of numeric columns, will fetch the json, convert the data into a matrix, then convert it into a data frame.

df_from_url = function(url, ncol, number_columns) {
    json = fromJSON(file = url, method = "C")
    df = data.frame(matrix(unlist(json$resultSets[[1]][[3]]), ncol = ncol, byrow = TRUE), 
        stringsAsFactors = FALSE)
    colnames(df) = json$resultSets[[1]][[2]]
    df[, number_columns] = apply(df[, number_columns], 2, function(x) as.numeric(as.character(x)))
    return(df)
}

Some Setup

Years

The APIs take seasons as strings, so we need to convert from the years in question to the formatted season strings. 2007 is the first year for which they have lineup data.

years = sapply(2007:2015, function(year) sprintf("%4d-%02d", year, (year + 1)%%100))

Team Ids

This is absolute overkill, because none of the team ids have changed over the year range weโ€™re interested in, but I didnโ€™t know that for sure until after Iโ€™d ran it.

team_fmt = "http://stats.nba.com/stats/leaguedashteamstats?Conference=&DateFrom=&DateTo=&Division=&GameScope=&GameSegment=&LastNGames=0&LeagueID=00&Location=&MeasureType=Base&Month=0&OpponentTeamID=0&Outcome=&PORound=0&PaceAdjust=N&PerMode=Per100Plays&Period=0&PlayerExperience=&PlayerPosition=&PlusMinus=N&Rank=N&Season=%s&SeasonSegment=&SeasonType=Regular+Season&ShotClockRange=&StarterBench=&TeamID=0&VsConference=&VsDivision="
team_urls = sapply(years, function(year) sprintf(team_fmt, year))
team_dfs = sapply(team_urls, function(url) df_from_url(url, 30, c(1, 3:29)))
team_ids = Reduce(union, team_dfs[1, ])

Player Data

First, we download the player data. Weโ€™ll loop over the years and NBA stat collections, and then combine all the data together with merge and rbind into one big data frame. We request stats per 100 plays, but the API seems to intelligently determine when to respect that.

columns = c(35, 32, 24, 27, 30)
stat_types = c("Base", "Advanced", "Misc", "Scoring", "Usage")
player_fmt = "http://stats.nba.com/stats/leaguedashplayerstats?College=&Conference=&Country=&DateFrom=&DateTo=&Division=&DraftPick=&DraftYear=&GameScope=&GameSegment=&Height=&LastNGames=0&LeagueID=00&Location=&MeasureType=%s&Month=0&OpponentTeamID=0&Outcome=&PORound=0&PaceAdjust=N&PerMode=Per100Plays&Period=0&PlayerExperience=&PlayerPosition=&PlusMinus=N&Rank=N&Season=%s&SeasonSegment=&SeasonType=Regular+Season&ShotClockRange=&StarterBench=&TeamID=0&VsConference=&VsDivision=&Weight="
players = NULL
for (year in years) {
    season_df = NULL
    for (i in 1:length(stat_types)) {
        stat_type = stat_types[i]
        c = columns[i]
        numeric_columns = c(1, 3, 5:(c - 1))
        url = sprintf(player_fmt, stat_type, year)
        df = df_from_url(url, c, numeric_columns)
        if (is.null(season_df)) {
            season_df = df
        } else {
            season_df = merge(season_df, df, by = 1, all.x = TRUE, suffixes = c("", 
                sprintf("_%s", stat_type)))
        }
    }
    season_df$SEASON = factor(year)
    if (is.null(players)) {
        players = season_df
    } else {
        players = rbind(players, season_df)
    }
}

Lineup Data

Fetching lineup data is similar; however, the API is limited to 250 entries per response, so we loop through the years, teams, and stat groups. This results in well over a thousand API calls, and can take a very long time to run.

stat_types = c("Base", "Advanced", "Four+Factors", "Misc", "Scoring", "Opponent")
columns = c(31, 24, 18, 18, 25, 31)
lineup_fmt = "http://stats.nba.com/stats/leaguedashlineups?Conference=&DateFrom=&DateTo=&Division=&GameID=&GameSegment=&GroupQuantity=5&LastNGames=0&LeagueID=00&Location=&MeasureType=%s&Month=0&OpponentTeamID=0&Outcome=&PORound=0&PaceAdjust=N&PerMode=Per100Plays&Period=0&PlusMinus=N&Rank=N&Season=%s&SeasonSegment=&SeasonType=Regular+Season&ShotClockRange=&TeamID=%d&VsConference=&VsDivision="
lineups = NULL
for (year in years) {
    for (team in team_ids) {
        season_df = NULL
        for (i in 1:length(stat_types)) {
            stat_type = stat_types[i]
            c = columns[i]
            numeric_columns = c(4, 6:c)
            url = sprintf(lineup_fmt, stat_type, year, team)
            df = df_from_url(url, c, numeric_columns)
            if (is.null(season_df)) {
                season_df = df
            } else {
                season_df = merge(season_df, df, by = 2, all.x = TRUE, suffixes = c("", 
                  sprintf("_%s", stat_type)))
            }
        }
        season_df$SEASON = factor(year)
        if (is.null(lineups)) {
            lineups = season_df
        } else {
            lineups = rbind(lineups, season_df)
        }
    }
}

Player Cleanup

The API treats minutes differently depending upon the stat group requested. Advanced appears to return minutes per game while Usage returns total minutes. We rename these appropriately.

players = mutate(players, MIN_TOTAL = MIN_Usage, MIN_GAME = MIN_Advanced)
players = select(players, -X, -matches("CFID|CFPARAMS|_[A-Z][a-z]", FALSE))

Lineup Cleanup

For lineups, however, Advanced seems to return the total minutes. Once again, we rename the column.

lineups = tbl_df(lineups)
lineups = mutate(lineups, MIN_TOTAL = MIN_Advanced)
lineups = select(lineups, -X, -matches("GROUP_SET|CFID|CFPARAMS|_[A-Z][a-z]", FALSE))
lineups = Filter(function(x) !all(is.na(x)), lineups)

Identifying players

To match the lineup data to the player data, we need to identify the players in each lineup. Parsing the GROUP_ID allows us to do that.

lineups$PLAYERS = t(sapply(lineups$GROUP_ID, function(x) {
    as.integer(unlist(strsplit(as.character(x), split = " - ")))
}))

Calculating Player Averages for a Lineup

For a given lineup, we find the stats for the players in the lineup and average them. For some stats, this makes sense. For others, it wonโ€™t. In many cases, weโ€™ll be more interested in the sum, but we can get that later by multiplying by 5.

season_col = grep("SEASON", colnames(lineups))
player_col = grep("PLAYERS", colnames(lineups))
numeric_player_columns = as.vector(which(sapply(players, is.numeric)))
lineup_averages = data.frame(t(apply(lineups, 1, function(x) {
    srows = players$SEASON == x[season_col]
    prows = players$PLAYER_ID %in% as.numeric(x[player_col:player_col + 4])
    sapply(players[srows & prows, numeric_player_columns], mean)
})))

Calculating Usage-Weighted Averages for a Lineup

We do something similar to calculate the usage-weighted averages for a lineup. This wonโ€™t make any sense for most stats, but for many offensive stats, it should provide a more reasonable estimate than a straight average.

usg_weighted = data.frame(t(apply(lineups, 1, function(x) {
    srows = players$SEASON == x[season_col]
    prows = players$PLAYER_ID %in% as.numeric(x[player_col:player_col + 4])
    stats = players[srows & prows, numeric_player_columns]
    tot_usg = sum(stats$USG_PCT_PCT)
    sapply(stats, function(y) sum(y * stats$USG_PCT_PCT)/tot_usg)
})))

Putting it all together

Finally, we add suffixes to our lineups, averages, and usage-weighted averages, and merge them all together into a gigantic data frame.

colnames(lineups) = paste(names(lineups), "lineup", sep = ".")
colnames(lineup_averages) = paste(names(lineup_averages), "player", sep = ".")
colnames(usg_weighted) = paste(names(usg_weighted), "usage", sep = ".")
nba = merge(merge(lineups, lineup_averages, by = 0), usg_weighted, by = 0)
nba$Row.names = NULL
nba$Row.names = NULL
dim(nba)
## [1] 66784   259

Net Rating

In the end, what we really care about is the Net Rating of lineups. Will our lineup score more points than their opponents? Itโ€™s important to note stats.nba.com formulation of Net Rating (and hence Offensive Rating and Defensive Rating) for players is essentially scaled +/-, and is distinct from the Dean Oliver version of these stats.

It seems that the volume of 3 pointers made by a lineup doesnโ€™t really depend upon the volume of 3 pointers taken by the players in that lineup. It may be that this is far more dependent on strategy, but this definitely needs more investigation.


 

About Author

Tom Walsh

Tom Walsh (M.Sc. Computer Science, University of Toronto) developed a desire to get deeper into the data while leading a team of developers at BSports building Scouting Information Systems for Major League Baseball teams. A course on Basketball...
View all posts by Tom Walsh >

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application