NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Data Visualization > Machine Learning Driven Predictions of House Prices in Ames

Machine Learning Driven Predictions of House Prices in Ames

hicksjordan1999@gmail.com
Posted on Dec 29, 2021

The skills the authors demonstrated here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Team Members: Aidan Au, Jacob Smith, and Jordan Hicks

Background & Research Question

When investing in a house, investors often want to maximize their return on investment by buying the house for less than it is worth. Of course, it isn't that simple, they have to take into account fees from middlemen, so it can sometimes be hard to determine how much money they'll make on a house. This is where machine learning comes in. By getting an accurate estimate of how much money they could reasonably expect to sell a house for, the investor can determine if, after the initial cost of the house and all fees are paid, they will make any profit, and whether the potential of profit is worth the risk.

The goal of this project is to predict what a house should sell for in Ames, Iowa as closely as possible by minimizing the RMSE (Root Mean Squared Error), a measure of how much difference there will be between the model's prediction and the real value on average.

Data Source and Data Cleaning Process

All the data collected here was derived from the Ames, Iowa housing Kaggle Dataset, which will be linked below.

 

Before we could select the best features for the data, we still had a lot of missing information, and some variables were described using different words, which can;t always be thrown into a machine learning model without some pre-processing.

Our process was first to input any missing information, and then split the data into categorical variables and numerical variable,which we would then either dummify, or perform a box-cox transformation on, respectively. After this we would standardize all of the data, and then perform feature selection.  That's a lot of information to digest, so let's explain each step of the process.

Data Inputation

The first step was to determine how to handle missing data. After examining he variables more closely, we found three different categories of variables, and handled them accordingly.

  • Numerical variables: For these variables we found the median of all results in the column, and simply filled in the missing values with that.
  • Categorical variables where the feature may not exist: For these cases, a missing value likely meant the feature did not apply, so we created a new category "None".
  • Categorical variables where the feature almost certainly exists: When it was very unlikely that a house simply didn't have the variable listed (such as the type of electrical system), we decided to use the mode, or most common occurrence in that column as a prediction for what this house was likely to have.

Feature Transformation

Numerical Variables

Machine learning models work best with normal distributions, so we used a box-cox tranformation to reduce the skewness of all the numerical variables.

Categorical Variables

In order to plug categorical variables into linear models, we needed to turn the different categories into numbers. We used dummification to get additional columns, each containing zeros and ones to determine if a certain house had a specific feature or not. Fr example, a single house, instead of having an overall quality variable, would now have the variables "low overall quality" and "high overall quality" and a 1 in whichever column matched the feature that it has.

Feature Selection

The raw data had 79 different explanatory variables, and 2580 different homes. After a forward-stepwise feature selection process, we ended up using 47 variables in our machine learning models. Some of the variables with the highest correlation to sale price were the gross living area, the house's overall quality rating, the total square footage of the basement, and the car capacity of the garage.

Target Transformation

When we looked at the price distribution of houses, it turned out that we had a lot of rightward skew. This can cause our models to have trouble predicting the price of a house, so to counteract this, we decided to have the models predict the natural log price of the house. This allowed to predict prices within a normal distribution, and reduce the RMSE.

Model Selection

Once we had finished all of the data cleaning, and all of the feature selection, we were finally ready to test out different machine learning models. we split the data into portions that we would train the model with, and portions that we would to evaluate how the model performed. When we tested a model, we still had to figure out what parameters for the model worked best for the data we had.

To find these we used a combination of grid searching and the Optuna library, although the details of those aren't very important for understanding the results. These are the difference between the "train" and "test" scores listed in the table below. We are trying to find he lowest RMSE test score possible. After testing several different models, we found these final scores.

Models (10-Fold CV)
R^2 Train
R^2 Test (10-Fold CV)
RMSE Train
RMSE Test Rank of
RMSE Test
SVR (RBF Kernel/Gaussian) 93.0893% 92.3379% 0.100817 0.109607 1
Cat Boost 92.9744% 92.0410% 0.101543 0.11171 2
SVR (Linear) 92.0530% 91.8460% 0.102742 0.11307 3
Multiple Linear Regression 92.8693% 91.6591% 0.101799 0.114359 4
Ridge 92.8705% 91.6577% 0.101742 0.114369 5
Lasso 92.8694% 91.6581% 0.101796 0.114394 6
GBM 91.4051% 91.5348% 0.112475 0.115208 7
XG Boost 91.3796% 91.3506% 0.112594 0.116455 8
Light GBM 91.0295% 90.2929% 0.115007 0.12337 9
Random Forest 90.0454% 88.2390% 0.121267 0.135796 10

Reccomendations

As you can see from the above table, it looks like an SVR model (Support Vector Regression Model) with a gausian kernel performs the best at predicting house prices out of these models. The Cat boost model (an iteration of a random forest model) is also a good option. While an SVR model with a linear kernel does have one of the higher scores, these can be very computationally expensive, so we can't recommend using it.

Sources

Dataset: https://www.kaggle.com/c/house-prices-advanced-regression-techniques

Github repo for project: https://github.com/hzeig/ames-housing-predictions.git

About Author

hicksjordan1999@gmail.com

View all posts by hicksjordan1999@gmail.com >

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application