NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > Prediction Model of Metabolic Syndrome in Non-obese Body Population

Prediction Model of Metabolic Syndrome in Non-obese Body Population

Sangwoo Lee
Posted on Jun 21, 2019

Sangwoo Lee

Introduction

Metabolic syndrome is defined as a cluster of conditions that occur together that increases; the risk of certain diseases. Based on data, a person is diagnosed to be metabolic syndrome positive if s/he has  three or more of the conditions below (Fig. 1):

  1. Abdominal obesity, measured by waist circumference greater than 40 inches for men, or greater than 35 inches for women
  2. Triglyceride level of 150 milligrams per deciliter of blood (mg/dL) or greater
  3. HDL(high-density lipoprotein) cholesterol of less than 40 mg/dL for men or less than 50 mg/dL for women
  4. Systolic blood pressure (top number) of 130 mmHg or greater, or diastolic blood pressure (bottom number) of 85 mm Hg or greater
  5. Fasting glucose of 100 mg/dL or greater

 

Metabolic syndrome is a serious health condition that affects about 23 percent of adults. Metabolic syndrome positive persons are at higher risk of cardiovascular disease, diabetes, stroke and other diseases.

Metabolic syndrome positiveness is typically expected to be found for obese people. However, there is another population of people who are not obese but metabolic syndrome positive. Usually, these non-obese but metabolic syndrome positive people are unaware of their condition and may think that they are healthy.

In the project, we wanted to focus on these non-obese but metabolic syndrome positive people and develop a prediction model to predict metabolic syndrome positiveness/negativeness in non-obese body population on the basis of demographic and environmental factors.

 

   

Fig. 1. Decision of  of metabolic syndrome and its effects on diseases

Data Processing

Our EHR (electronic health records) example is shown in Table 1. With such EHR, we did  data processing through machine learning classifications as in Fig. 2.

In Table 1, we can see that there is significant output class imbalance. We solve the output class imbalance problem by applying an oversampling method called SMOTE(synthetic minority oversampling technique) to the majority class records of the training set, followed by applying  random downsampling to the minority class records of the training set. However, positive:negative ratio of 1:1 on the oversampled/downsampled training set may cause significant differences between the distribution of the training set and the distribution of the test set, overfitting problems may occur. As a solution, we chose not to aim at positive:negative ratio of 1:1. In other words, after all these oversampling/downsampling, we still have class imbalance problems.

As in Fig. 2, since we are focusing only on non-obese population in this research, we selected only population satisfying BMI(body mass index)< 25km/m2. After handling missing categorical variables, selecting for BMI < 25km/m2, followed by oversampling/downsampling, we finally got 30953 records on the training set, and 17514 records on the test set.

 

   

Table 1. An EHR example

   

Fig. 2. Overall flow of data processing ~ classification

Since we are considering logistic regression as one of our machine learning algorithms in our research, we also checked whether there is a linear relationship between the logit of the outcome and each of the predictor variables, as in Fig. 3.

   

 

Fig. 3. Linear relationship checked between the logit of the outcome and each of the predictor variables.

Besides, we also checked whether there is little or no multicollinearity among the predictor variables. We did multicollinearity checks separately for the categorical variables and continuous variables, respectively. We find that in particular, there is significantly high multicollinearity in the continuous variable plot. This can be understood, since BMI is indeed calculated from height and weight. Plus, height and weight are usually in a linear relationship.

   

Fig. 4. Multicollinearity results

In efforts to decrease the high multicollinearity among the continuous predictor variables, we adopted three different models as in Fig. 2, where model A considers BMI, model B considers both height and weight, and model considers all of BMI, height, and weight. For all of model A ~ C, age, sex, smoking, alcohol, exercise were commonly included.

Results

Our machine learning modelling results can be found in table 2. As it is common to get results with high accuracy but low sensitivity(or high accuracy but low specificity) in typical class-imbalanced problems, our parameter tuning was performed in the domain of F1-score. In addition, we checked performance for accuracy, precision, sensitivity, and F1-score. Our results in table 2 shows that both  logistic regression and random forest classification are able to give alerts to metabolic syndrome positive persons.

   

Table 2. Results from applying machine learning algorithms

Findings and Future Work

In this research, sing basic health checkup results and machine learning, it is possible to to predict  metabolic syndromes positiveness with high accuracy/sensitivity/specificity/precision/f1-score.

In the future work, we are planning to write an R Shiny app which tells predictions for metabolic syndrome positiveness/negativeness to anyone interested, based on his/her basic information such as height, weight, etc, input to the R Shiny app.

 

* Under submission for a journal

The skills the author demonstrated here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

About Author

Sangwoo Lee

View all posts by Sangwoo Lee >

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application