NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R Shiny > Data Analyzing the Opioid Epidemic in Connecticut

Data Analyzing the Opioid Epidemic in Connecticut

Katie Critelli
Posted on Jul 23, 2017
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Background

At the end of 2016, data from a Stat News article declared that over 59,000 Americans had died of drug overdoses, the most ever recorded in the course of a year. The article highlighted the growing national abuse of heroin and prescription painkillers. In light of this national crisis, this project focuses a spotlight on the state of Connecticut. Using opioid use datasets from 2014-2016, demographic, educational, and geographic factors are examined to answer the following questions:

1) Which populations have been hardest hit by the opioid crisis?

2) How can the government intervene most effectively to prevent deaths?

The overall project can be found here as a Shiny app: https://kcritelli.shinyapps.io/Shiny_Project/
Relevant code for the project can be found here: https://github.com/KCritelli/Shiny_Repository

Background Information Sources

http://www.courant.com/data-desk/hc-report-connecticut-income-gap-highest-in-the-nation-20150206-htmlstory.html

http://www.courant.com/breaking-news/hc-ocme-overdose-numbers-0224-20170223-story.html https://ctmirror.org/2013/11/08/nations-report-card-ct-continues-show-largest-achievement-gap/

https://www.statnews.com/2016/12/09/opoid-overdose-deaths-us/

Data Sets

In order to assess distribution and use of opioids in the state of Connecticut, datasets were taken from multiple sources:
1) Kaggle.com
https://www.kaggle.com/apryor6/us-opiate-prescriptions

2) Data.gov
https://catalog.data.gov/dataset/accidental-drug-related-deaths-january-2012-sept-2015

https://catalog.data.gov/dataset/opioid-related-treatment-admsissions-by-town-in-department-of-mental-health-and-addiction-

Kaggle and Data.gov

Datasets from Kaggle provided information on counts of opioid-related overdoses by US state as well as a breakdown of the opioid prescriptions written across various medical specialties. Further details within the "Opioid Prescriber" dataset could yield interesting insights into which medical specialties are prescribing opioids in cases in which a different drug could be substituted.

Datasets from Data.gov provided detailed information on accidental drug-related deaths in the state of Connecticut from 2012-2016, which was filtered down to the years 2014 and 2016 for the purpose of this analysis. The dataset "Opioid-related treatment admissions by town in the department of mental health and addiction" was also used to compare locations of opioid-related death to locations of active opioid addiction treatment centres.

Why Connecticut?

-Connecticut has been hit hard by the national opioid crisis, which appears to be growing and gaining local and national concern

-Connecticut is a state of extremes. It has one of the largest educational achievement gaps in the country, according to the Department of Education, and it boasts the largest income gap, according to the Economic Analysis and Research Network

-Connecticut offers an interesting model for study: Opioid use and prescription data is readily available, different demographic and social extremes are open to analysis, and the question of how to quell the medical crisis remains unresolved

Methodology and Data Analysis

which populations have been hardest hit by the opioid crisis?

In order to answer the first question, the dataset from Data.gov reporting opioid-related deaths from 2012-2016 was filtered and analysed. The analysis focused on data from the year 2014, in order to match it with the data on opioid prescriptions and to isolate a period in time.

 Histograms

The final Shiny app contains a histogram with opioid-related deaths broken down by age. The resulting plot shows that opioid-related deaths seem to fall largely within two age ranges: mid-20s to mid-30s and mid-50s to mid-60s. This is likely due to the many forms that opioid drugs take; opioids encompass both recreational heroin and its variants as well as a broad spectrum of painkillers.

To further understand demographic trends, counts were produced of all opioid-related deaths by race and then compared to racial demographics in the state of Connecticut. A Chi-squared test showed that generally, males were over-represented in the opioid category and white and hispanic males were significantly over-represented.

In order to understand social factors that might be tied to opioid use and death, two scatter plots were made examined the relationships between educational achievement across CT towns and the proportion of opioid deaths and wealth across CT towns and the proportion of opioid deaths.

Scatterplots

The scatter plot examining educational achievement vs. proportion of opioid-related deaths in particular showed a significant negative correlation via a Pearson's Correlation, suggesting that greater educational achievement (or the hope of future success that it promises) can help stave off a local opioid epidemic. Interestingly, some towns such as Bridgeport and Plainfield are outliers, showing that low % SAT benchmark achievement does not have to be closely tied to a high rate of opioid deaths; Hartford is at the opposite end of the spectrum, showing that even towns with overall high achievement can succumb to drug epidemics.

Data Analyzing the Opioid Epidemic in Connecticut

Data Analyzing the Opioid Epidemic in Connecticut

How can the local government intervene most effectively to prevent deaths?

In order to understand how the local government can help potential and current opioid-users, it must be able to measure the efficacy of current treatment strategies as well as pinpoint trackable sources of drugs.

Efficacy

For this project, the efficacy of government-funded opioid addiction treatment centres was measured by creating a map and plotting sites of annual opioids deaths against addiction treatment centres with at least one patient admitted in the same year (in both cases, 2016).

This map demonstrates where many individuals are dying but do not have access to local treatment centres or where multiple treatment centres are present and few individuals are dying. Locations with high death counts but not treatment centres highlight areas where government funds should be focused for maximal benefit; similarly, areas where there are many treatment centres but few deaths require further investigation, as they could either represent areas with many patients that are handling treatment incredibly well or areas with few patients where centres could be closed and funds used elsewhere.

In order to pinpoint trackable sources of drugs, data was taken from the Kaggle "Opioid-Prescriber" dataset and opioid prescriptions written in Connecticut were sorted by medical specialty in order to create a bar graph. This information can be useful in helping the local government understand which doctors are writing the most prescriptions and should be tracked most closely. This data can be further analysed in order to find out which specific clinicians are writing the most prescriptions and for how many/which drugs.

Conclusions

Overall, this project provided valuable analysis to understand which groups are being affected by the opioid epidemic in Connecticut and what steps the local government can take to help them. It seems that both young (25-35 years old) and middle-aged (50-60 years old) individuals were highly affected and white and hispanic males were very over-represented in this group. Low educational achievement, as measured via % SAT benchmark achievement in each town, was highly correlated with proportion of the town population dying from opioid-related death, showing that social factors are also significant.

Positively, the map of treatment centre locations vs. locations of opioid-related deaths show where the local government could re-allocate resources in order to provide more help to areas in need. The bar graph depicting the number of opioid prescriptions written across various medical specialties can also begin to help the state government trace where opioid prescriptions are coming from and in which cases they can be stopped. Though this project is only a preliminary effort, it shows how publicly available data can be used to answer interesting and societally-relevant problems.

About Author

Katie Critelli

Katie graduated from the University of Pennsylvania with a Bachelor's degree in Neuroscience and an Honor's thesis focused on protein-modeling in neurodegenerative diseases. She worked previously at Booz Allen Hamilton in the military healthcare division. Katie has joined...
View all posts by Katie Critelli >

Related Articles

Data Analysis
Injury Analysis of Soccer Players with Python
Machine Learning
Ames House Prices Predictions
Python
US Honey Production Analysis With Python (1998-2012)
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models
Python
EDA and machine learning Ames housing price prediction project

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application