NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R Shiny > IPL Cricket League Insights over the last decade

IPL Cricket League Insights over the last decade

Ashish Sharma
Posted on Oct 21, 2019

IPL:

The Indian Premier League (IPL) is one of the most widely watched cricket leagues in the world. Hosted in India typically in the 8 cities that represent the 8 participating teams, this is a tournament where renowned international cricketers come together and participate in 20-over matches that are brimming with excitement.

Founded by the Board of Control for Cricket in India (BCCI) in 2008, IPL is frenzied entertainment, both on and off the field. Nonstop action, Bollywood film stars, animated die-hard fans, glamour, music, cheers, roars, uncontrollable emotions and much more!

 

Purpose:

In a game such as cricket, there are myriad factors that contribute to a team's victory. This project brings to life some of those quantifiable drivers. I've built this application with flexibility and interactivity in mind. Users of this application can select teams they'd like to compare and do so over any year from 2008 to 2017. With extensibility built-in, further addition of data is as simple as appending the new datasets. The application is located here:

https://ashishsharma.shinyapps.io/IPLInsightsv1/

 

Data:

Data for this project was obtained from Kaggle and comprises of 2 datasets that span 10 years of data from 2008 to 2017:

  1. Matches - data for all matches played. (Data granularity: every match played)
  2. Deliveries - ball by ball data for every match played. (Data granularity: every ball bowled)

 

IPL at a glance:

This menu item provides overall figures of all the matches played over the 10-year period. Number of matches won by each of the participating teams, tournament winners and runner ups, "Man of the match" as well as "Player of the series" for every year provide an informed overview of how teams have performed till date. Overall, there were approximately 600 matches played with close to 200,00 runs scored. Given that itโ€™s a 20-over match, it's easy to notice its "hard-hitting" nature, evidenced by the number of boundaries: ~ 6500 sixes and 17,000 fours. 

Mumbai Indians has won the most number of matches, with Chennai Super Kings following closely behind. It's no surprise that when these 2 teams go head-to-head, nearly every family in India are either indoors watching this match on TV or packing the stadium to its fullest capacity.

 

The Application:

The application follows a top-down methodology wherein the user starts with selecting teams for comparative analysis and, with each menu item, further drills down to a more granular level of detail such as key batsman and bowler metrics for the chosen teams.

 

The user first starts with selecting a team of interest and the time-period of analysis using the input range provided.

 

In the "Opponent Analysis" tab, users can select a rival team to obtain head-to-head metrics of the two teams under consideration. (Note: The team chosen in the "Team Highlights" tab is automatically brought into this one for comparison)

Outcomes of every instance where the 2 selected teams have faced each other are populated. This can be filtered down to a single year or over a range. The range chosen in the previous menu item is automatically considered for comparison as well.

The two teams I've used as examples are Mumbai Indians and Chennai Super Kings.

As seen by the visualization on the left, each team's position at the end of a tournament is plotted.

The visualization on the right summarizes the number of wins by each respective team. In this case, Chennai Super Kings is 2 wins short of leveling with the Mumbai Indians.

 

Batsman Metrics:

To further dig into the drivers of such a close contest between the two teams, I've chosen metrics that are the engine of any IPL cricket match - the runs scored by the batsmen of each team. This sets the stage of any IPL match and nearly any aspect going forward is predicated by a team's batting performance.

This section computes the "Strike Rate" (number of runs per 100 balls faced) and the "Batting Average" (number of runs/number of times they got out). Unarguably, these metrics are pivotal to any batsman analysis, especially in a 20-over format game.

The visualization plots the top batsmen from each team with the position and size of each point illustrating their contribution to the runs scored. As seen in this scenario, Chennai outdoes Mumbai in terms of ranking on Strike Rate, however Mumbai bolsters its batting attack with a reliable lineup. Chennai's strength here is its top 3 batsmen (both for Strike Rate and Batting Average). Mumbai equalizes with 8 batsmen that collectively put up a fight in both areas.

 

Bowler Metrics:

Coming to the 2nd innings of the match, where the opposing team chases the runs scored, the onus of defending a score lies with the bowlers and the fielders. To contrast the batsman metrics, I've chosen "Economy Rate" (average number of runs conceded for each over bowled) and "Wickets Taken" (primary measure of an individual bowler's ability) as crucial drivers of bowling. It's interesting to notice the bowling strategy of both teams and their consistency for both batting and bowling. The visualization depicts Chennai primarily relying on its top 3 bowlers whereas Mumbai makes up with multiple bowlers at its disposal.

 

Conclusion:

Cricket is very unpredictable, and given this uncertainty, I conclude that Mumbai has done well to have a "set" of players that can be deployed based on the situation at hand. Mumbai's captain has the comfort of shuffling his players, which not only changes the opposing batsman's momentum but also places a level of comfort should the top players fail to deliver. Based on these visualizations, it appears that Mumbai has strategized for handling any situation and optimized their team to not only deliver but also spread responsibility across all team members - a huge plus to have in such a game!

 

Next steps:

This application is a start in attempting to capture IPL metrics that matter the most. Having said that, there are many more statistics and measures that can be further incorporated and refined. Encompassing other aspects such as fielder, wicket keeper and captaincy stats, and correlations between them are a few things that come immediately to mind. Venues games are played at, umpire influence, home crowd advantage, coach influence are a few examples, among others, that will enrich this application further.

About Author

Ashish Sharma

Ashish Sharma is currently a Fellow at the New York City Data Science Academy NYCDSA. Enthusiastic about helping companies elevate their data capabilities and delivering value, Mr. Sharma has worked as a Business and Technology Consultant through most...
View all posts by Ashish Sharma >

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application