NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R Shiny > Data Analysis on Honeybees and Neonic Pesticides

Data Analysis on Honeybees and Neonic Pesticides

David Green
Posted on May 28, 2021
The skills I demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

INTRODUCTION

Having data studied the effects of invasive pest species on agriculture as a graduate student, I understand the increasing necessity for pesticide use. With the planet hosting a population expanding well over 7 billion, the need to maximize food production to feed all those people has become a high priority. Pests, causing financial losses in the hundreds of billions, cause farmers and corporations go to great lengths to protect their agricultural products from the 7 thousand approximate species that hamper their industries. (Govorushko 2014)

While there are a wide variety of pest control strategies in use globally, a class of pesticide, Neonicotinoids, saw use for almost 20 years in the United States starting in 1990โ€™s, with a reduction in use, and sometimes a complete disuse altogether, only beginning in 2017. This class of pesticide works by attacking specific points in the nervous system, preventing it from functioning properly, and ultimately resulting in death. While very effective, they unfortunately are not selective in design, and are toxic to humans and pollinators alike (Blacquiรจre et al, 2012).

One of the most crucial pollinators to our agricultural industry, the honeybee, was no exception. The scientific community has kept a close eye on the slowly declining population of honeybees around the world, and it is possible that with that decline, a drop in extant plant species may follow.

THE DATA

Due to the financial and scientific benefits that come from understanding this type of information, I chose a dataset that was aggregated from the National Agricultural Statistics Service (NASS), the USGS, the US Census, and the USDA, that covers honey production, pricing, value and yield, in conjunction with the neonic pesticide use in the corresponding part of the United States. The data spans from the early use of neonic pesticides in 1998, all the way to its decline in use in 2017.

In my analysis, I chose to focus on the top ten honey producing states from the dataset: North Dakota, South Dakota, California, Texas, Montana, Idaho, Florida, Minnesota, Washington, and Michigan. 

RStudio, ggplot2, dplyr and tidyr were used to refine, process and analyze the dataset, and a RShiny app was developed to interact with the original data in a user friendly way. The original dataset can be downloaded from (Kaggle), the Github repository (here), and the app can be accessed (here).

WHAT TO LOOK FOR...

Many arthropods, especially honeybees, are very sensitive to environmental factors, both biotic and abiotic in nature. A change in weather, chemical runoff, land development, disease and food availability, can have drastic effects on honey production and honeybee health. Honey production may vary dramatically year to year, due to these ever changing factors, so to start, one wants to look at the long term effects: Do we see any significant changes from when neonic pesticide use began, and do we see any lingering effects from after it ended?

Data Analysis on Honeybees and Neonic Pesticides
Total honey production over a 20 year period: 1998-2017 (Idaho).

Here we can see illustrated, an example of the total production (lbs) of honey over time, from 1998 to 2017 (Alabama).  Across the top ten honey producing states, overall, there was no significant difference in collective honey production between 1998 and 2017, however, outside of those, this changes from state to state. Some show increases in production, and many show decreases, but only a handful show any visually striking changes. The biomes of these states differ drastically, and many factors can be the cause of these changes specific to those locations. 

Data on POSSIBLE RED FLAGS 

Data Analysis on Honeybees and Neonic Pesticides
Honey yield per colony (lbs) over a 20 year period: 1998-2017 (North Dakota)

If we take a look at the difference in honey yield per colony over a 20 year period, statistical analysis shows that there was a significant change in yield per colony during the time neonic pesticides were used.  Production value across the top ten states overall, also, did not see a significant change in value, however, this once again varied state to state. 

Data Analysis on Honeybees and Neonic Pesticides
Value of honey (USD) vs Neonic pesticide Application (kgs): 1998-2017 (North Dakota)

WHERE TO GO FROM HERE

Aggregated data on pesticide application can be very valuable, not just in a monetary sense, but to the health of our ecosystems as well. By evaluating how pesticides are applied in different parts of the country, we can see where these treatments are most effective, and where they are doing more harm than good. It will also help companies limit their effect on the environment, especially in areas where treatments have little to no effect on their production value. If we are to continue using treatments in agriculture that harm our pollinators, it has to be done responsibly, and through calculated and educated decisions.

Given more time, I would like to assess the effects of the different types of neonic pesticides, and how they effect honeybee colonies, production and honey production value. It is possible that certain pesticides are more effective in certain states than others, and that the application of one or more, does more harm than good, both ecologically and financially.

REFERENCES

Blacquiรจre, T., Smagghe, G., van Gestel, C.A.M. et al. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973โ€“992 (2012). https://doi.org/10.1007/s10646-012-0863-x

Govorushko, S. M. "Mammals and birds as agricultural pests: a global situation." ะกะตะปัŒัะบะพั…ะพะทัะนัั‚ะฒะตะฝะฝะฐั ะฑะธะพะปะพะณะธั 6 (eng) (2014).

https://www.freepik.com/free-photo/selective-focus-shot-honeybee-collecting-pollen_14264427.htm#page=1&query=honeybee&position=6

About Author

David Green

Certified in data science, confident working in R, Python, Git and SQL development. Skilled in applying machine learning techniques in data analysis of large datasets, alongside traditional statistical analysis triage
View all posts by David Green >

Related Articles

Data Analysis
Car Sales Report R Shiny App
R Shiny
Forecasting NY State Tax Credits: R Shiny App for Businesses
R Shiny
Behind the Curtains: Insights into NYC Broadway Shows
R
R Shiny Shows Decline in Even Strongest Democracies
R Shiny
R Shiny: Downstream Processing Dashboard

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application