NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R Visualization > Data Examining Historical NFL Gambling

Data Examining Historical NFL Gambling

Max Schoenfeld
Posted on Jul 29, 2018
The skills we demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.
Link to the Web App

This data application is primarily interested in examining the disparity between the realized results of NFL games and the predictions made by the Sports Books in Las Vegas. The visualization tools attempt to isolate a small handful of variables to identify trends and predict error.

Key Data Findings: Spreads

Bet on the underdog to cover the spread! Don't only look towards the most recent Super Bowl Champion Philadelphia Eagles, who were underdogs in all 3 of their playoff games. Take a look at the first chart on the spreads page, showing that nearly 400 more games saw the underdog cover the spread than the favorite.

Data Examining Historical NFL Gambling

The Error Variable (i.e. residuals) is expected to average 0 as we examine more games because we assume "Vegas knows," but instead a simple t-test shows that the average Error is -0.35 points, and is statistically significant.

2014 Season

Now letโ€™s take a look at spreads from the 2014 season. If there ever was a year of the underdog, that's it.

Data Examining Historical NFL Gambling

We can examine the 2014 season by looking at the trend over each week of the season. The below chart is filtered to include only data from the 2014 season (showing the mean error for each week).

Data Examining Historical NFL Gambling

We can see there was only one week in which the average point differential between every game's spread and the realized results was in the direction of the favorite. It should be noted that that week is week 20, a.k.a. the conference championship games, of which there are only 2 games to draw data from (compared to the first 17 weeks of the schedule, of which there are at least 13 games per week.) I'll add that 1 of those 2 games saw the favorite blow out the underdog by a wide margin, but it also saw that same unnamed favorite illegally deflate their footballs.

Regardless of how guilty of cheating the Patriots are, it is clear that the 2014 season is an outlier in this spreads data. If we omit data from the 2014 season, we can see that Vegas has gotten better at forming their lines over the years by seeing a negative slope in the simple linear regression.

 

Key Data Findings: Over/Under

Bettors beware! Vegas has gotten more accurate with their Over/Under lines over the years.

The linear regression clearly has a negative slope, meaning that with each additional year Vegas is reducing (on average) the error in their O/U lines. This time, we didn't omit any data to draw this conclusion.

The data is also hard to find any obvious trends in.

Distribution of Error

While we can see that the under has been correct more times than the over, a t-test of the error shows the mean to be +0.65 and statistically significant.

The under bet has been right more times than the over, but on average games will score a little bit over the offered line.

You may notice the histogram is a bit right-skewed, meaning that the mean (symbolized by the vertical line) is to the right of the peak. There is a reason for this. In any given game, the teams can not combine to score less than 0, meaning that there is a limit to the negative values. There is not, however, a limit to positive value (how much more they can combine to score when compared to the offered line).

What about looking at situational betting opportunities?

When the offered line is low (37 or less), the over tends to hit. Is the inverse situation true?

Yes it is. If you're facing an extreme over/under line, betting against its extreme bias will win more times than not. For reference, the average line in all games since 1979 is about 41.7, and the average line this most recent season (2017) is 44.1.

The Data

This application uses a dataset of every regular season and postseason NFL game since the 1979 season through the Super Bowl in 2018 (the culmination of the 2017 season). In addition to descriptive data of the NFL games and their results, the data includes what Las Vegas sports books offered as spreads (including the favorite team, of course) as well as the over/under line.

In both the spreads and O/U analysis, there is an important variable called Error. Error is measured in points, and can be positive or negative. In the case of the spreads, positive Error means the favorite covered the spread, while negative Error means the underdog covered the spread.

In the case of the Over/Under, positive means the teams combined to score more than the over/under line, while negative means the teams scored less than the over/under line. Error is essentially another term for residuals. We would expect error to be 0, but the data proves that to not always be the case. We can also examine absolute error - measuring by how much Vegas missed the mark.

Introduction to NFL Gambling

The NFL is the highest-grossing sports league in the world. In 2017, the NFL generated approximately $14 billion USD. In July of 2018, Forbes reported that 29 of the NFL's 32 teams are included in their list of the 50 most valuable sports franchises in the world.

The American Gaming Association, a casino lobbying group, projects that Americans bet $4.76 billion on Super Bowl LII in 2018, with more than 97% of that figure represented by illegally placed bets. Some of those types of bets may become legal in the near future, though. In May of 2018, the U.S. Supreme Court lifted the federal ban on sports gambling. States will gradually legalize sports gambling over the next few years, and the industry could very well evolve to become unrecognizable from what it is today.

Two common aspects of the game to place bets on are the winner of the game and the final score of the game. Since not every matchup between two opponents is an even match, this can be offset by the spread. The spread is essentially a number of points handicapped to the perceived underdog so as to make the bet of who is going to win the game one that can be made with (nearly) even money. The over/under bet is simpler: it's a figure that represents the total score of the two teams combined.

About Author

Max Schoenfeld

Max is a data scientist pursuing opportunities to use his machine learning expertise in a market-oriented setting such as sports gambling, finance, or general business analysis. He has business experience providing investment professionals with data solutions and recommendations.
View all posts by Max Schoenfeld >

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Christopher Belthoff January 19, 2020
Hi Max, Extremely interesting subject for applying R/Data Science analysis....thank you, a great post. I was curious if you are willing to share your raw data, and also, have you thought about applying this analysis to NBA or college-level data? Regards, Chris Belthoff cbelthoff@gmail.com

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application