Soccer players value, analysis and prediction

Dan Toledano
Posted on May 18, 2020

Shiny app|GitHub|LinkedIn

Introduction

The data used in this app was collected by Sega for the development of their franchise Football manager. FM is a simulation game letting you play in the role of the manager/director of a club. The quality and size of their database are such that many professional clubs have been using it in their recruitment process. In 2006, a famous Premier League club, Everton, signed a contract with Sega to have access to detailed information in their database. In France, OGC Nice, as many other clubs, is using it as a first filtering tool.

Data

The data for each player is separated in a few categories such that: technical, mental, and physical and some hidden variables relative to the personality of the player and it's preferred position on the field. Each one of them including up to 14 different attributes. They were collected from the 2017 version on the game, meaning they were last updated at the beginning of 2017. This first data set was joined with a second data set including a list of players and their market valuation during the 2019 summer transfer period.

Are we able to predict the value of players given their FM characteristics? If so, what will make a player valuable? These questions are very complex and depend on many variables.

Which attribute weight most in future value?

A quick analysis of the influence of the different attributes leads to a conclusion: offensive mental and tactical attributes seem to be very important in the value of a player. The result of a linear regression confirms it and shows a significant linear dependence with the players' age.

The following image shows how technical attribute is affecting the future value of a player.

Clustering

The next step is analyzing players' value is by answering the following question: Is there any clusters in players' characteristics distribution? If so, what is the distribution of the value for each group? In other words, can we observe clusters describing offensive and defensive players?

The result of a k-means with 3 clusters followed by a PCA shows clearly the presence of 3 clusters.

Conclusion

To conclude, this tool was built to help in taking a recruitment decision. First, by giving hints on important attributes in the future value of a player. Then by providing a search tool to compare different players. And finally by giving a better understanding of a player, by assigning him to a cluster. The remaining work (still in progress) is improving the prediction model by selecting important features. Then estimate the value distribution for each cluster and providing a tool to predict the group of a new player.

About Author

Dan Toledano

Dan Toledano

Dan has a background in applied mathematics and quantitative finance with a master degree in applied mathematics from Sorbonne University in Paris. He indeed specialized in random modeling with relevant experience as a quantitative researcher. He is passionate...
View all posts by Dan Toledano >

Leave a Comment

No comments found.

View Posts by Categories


Our Recent Popular Posts


View Posts by Tags

#python #trainwithnycdsa 2019 airbnb Alex Baransky alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus API Application artist aws beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep Bundles California Cancer Research capstone Career Career Day citibike clustering Coding Course Demo Course Report D3.js data Data Analyst data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization Deep Learning Demo Day Discount dplyr employer networking feature engineering Finance Financial Data Science Flask gbm Get Hired ggplot2 googleVis Hadoop higgs boson Hiring hiring partner events Hiring Partners Industry Experts Instructor Blog Instructor Interview Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter lasso regression Lead Data Scienctist Lead Data Scientist leaflet linear regression Logistic Regression machine learning Maps matplotlib Medical Research Meet the team meetup Networking neural network Neural networks New Courses nlp NYC NYC Data Science nyc data science academy NYC Open Data NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time Portfolio Development prediction Prework Programming PwC python python machine learning python scrapy python web scraping python webscraping Python Workshop R R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn Selenium sentiment analysis Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau team TensorFlow Testimonial tf-idf Top Data Science Bootcamp twitter visualization web scraping Weekend Course What to expect word cloud word2vec XGBoost yelp