NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Machine Learning > Using Machine Learning to Forecast Sales

Using Machine Learning to Forecast Sales

Denis Nguyen
Posted on Jun 30, 2016

Forecasting sales is an integral part of running successful businesses. Sales forecasting allows businesses to plan for the future and be prepared to meet demands and maximize profits. By knowing the demand, production and supply can be managed more effectively to drive business. Walmart has used precise forecasts to manage their 11,500 stores and generate $482.13 billion in 2016. Without models to guide their business, they could have been looking at more operating expenses and less revenue.

Subscribe to data science projects
Get data science inspiration and course promotion



The Data

This data was from a past Kaggle competition that Walmart set up to recruit data scientists. They were interested in forecasting future sales in individual departments within different stores and particularly interested in their sales on 4 major holidays: Super Bowl, Labor Day, Thanksgiving, and Christmas. These are probably holidays where their sales are the highest and so they want to make sure they have enough supply to meet demand.

The data contained 143 weeks of previous sales of 45 stores and their 99 departments, whether the week was a holiday, temperature, fuel prices, markdown (discounts), consumer price index, unemployment rate, store type, and store size. Using this information, sales of the next 39 weeks would be forecasted and checked for accuracy.

Below is a summary of the data provided.

Screen Shot 2016-06-27 at 04.07.36

Exploratory Data Analysis

By having an idea of how our data looks, we will be able to decide how to approach the problem. Visualizing the sales of Department 1 across different stores shows that there are spikes in sales in similar times throughout the year. This would correspond to certain holidays throughout the year and also shows that Department 1 was the same department in different stores. There are 4 spikes in sales throughout the year but they did not look like they corresponded to the 4 major holidays that Walmart was interested in.

Stores

The next step was to see whether all the departments had spikes in sales around the same time in the year. By plotting the sales of different departments within Store 1, the difference in departments is made evident. A holiday may affect Department 7 but may not affect Department 3 as much and vice versa. Consequently, past sales of individual departments would be used to forecast future sales and the store's overall performance would not be taken into consideration.

Departments

Now that we know that departments across stores are similar and that different departments respond differently to different times of the year, I decided to have a look at general trends in the data. Centered moving averages is performed on the data in order to visualize the general trend in the data. By increasing our value of k, we are averaging more of the observations and this gives us a graph that does hide trends with spikes in data.

MovingAverages

Seasonal decomposition was performed to understand the seasonal, trend, and noise components of the sales. There seems to still be underlying cyclical in the graph, as noted by periodic spikes in the noise. These may be problematic so further analysis is required.

SeasonalDecomposition

Tackling The Problem

Because this is a Kaggle competition, we are able to submit our forecasts for the 39 weeks online and see how it fairs against the forecasts of others. In order to get a gauge of the baseline and where to improve upon, an empty set with projected sales of 0 was submitted. This gave a rank in the 660-680 range since others had also submitted forecasts with 0 sales.

0 - sample

Although this is not the best method to forecast time series data, I wanted to see how the rank would change by using linear models. Using the tslm package in RStudio, the rank jumped up around 450. tslm fits linear models to time series by breaking down trend and seasonality components into variables, which would added together as a linear model.

2 - tslm.basic

The next approach was to fit an ARIMA model since it is a popular method to model time series data. This method is popular since it has been proven to be a good way to forecast future information from the past. It checks for stationarity and adds the constant fluctuation in order to make forecasts into the near future.

3 - seasonal.arima.svd

I became curious and wanted to see if another model fit by a R package could yield better results. This search led me to the stl package and the stlf function. By applying a STL decomposition, stlf models the seasonally adjusted data, reseasonalizes it, and returns the forecasts.

1 - stlf.svd

Surprisingly, it yielded better results than ARIMA. Further investigation into the R package and model of stl will be done. I also intend on running other models and combining them to see if the predictions are better. Although the data from features.csv was not used in these 3 models, they would be considered in the future as they may play an impact on sales of stores and departments. This is a work in progress and will be updated.

About Author

Denis Nguyen

With a background in biomedical engineering and health sciences, Denis has a passion for finding patterns and optimizing processes. He developed his interest for data analysis while doing research on the effects of childhood obesity on bone development...
View all posts by Denis Nguyen >

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Pallabh Bhura June 17, 2017
Hello Sir, I am a beginner and was working on the same dataset. It would have been really helpful if I could get some more insights about your work. Let me know if I could engage with you to discuss this project over email or any other medium you deem fit. Sincerely looking forward to your response. Thank you.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application