Valuating Classic Cars from Auction House Data

Posted on Oct 23, 2021

The used-car market has recently seen record breaking sales. According to the Manheim U.S. Used Vehicle Value Index, used-car prices rose 5.3 percent in September 2021 and 27.1 percent from a year earlier.

Is this inflation also present in the classic car market?

If you want to know your cars value you would use something like Kelly Blue book (KBB); an online tool that appraises cars based on many factors. However, KBB does not cover cars older than 1992.

Identifying this gap, I set out to web scrape auction data from the largest auction house in North America. The group sells thousands of cars a year that are typically older than 30 years. From the data scraped, features included: year, make, model, origin, auction date, auction location, and if it sold or not. I got data on nearly 13,000 cars from auctions ranging from 2016 to 2021.

My first goal was to group the data by manufacturer. The luxury sports car maker Porsche, had a large volume in sales every year, so I picked them first. To accurately assess a cars value I had to target a specific year and model.

I chose a 1973 Porsche 911 Carrera RS 2.7 Touring. The deviation between prices was great, those on the high end going for $750K and the low for $400K. The variation in price made it hard to say how accurate my predictions would be.

Next, I chose an Austin Mini Cooper. These had lower deviations, ranging from $5K to $40K. After analyzing more cars I came to the conclusion that the more affordable saw less variation and so were easier to predict.

Going further, I got the average selling price of car by what country they were made in. In the graph below, we can see all groups have had a large rebound from 2020, similar to the consumer used-market market.

After running analysis on more cars I concluded that for this to be accurate it would need much more data. Further, I would need to implement the code into an app (like Shiny) to setup a full user side experience. The accurate valuation of classic cars is possible but would take much more data and many more data features to distinguish a cars value.

Collecting this dataset was the first step in creating such a tool.

About Author

Tony Pennoyer

Aspiring Data Scientist. Currently a student at the NYC Data Science Academy.
View all posts by Tony Pennoyer >

Leave a Comment

No comments found.

View Posts by Categories

Our Recent Popular Posts

View Posts by Tags

#python #trainwithnycdsa 2019 airbnb Alex Baransky alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus API Application artist aws beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep Bundles California Cancer Research capstone Career Career Day citibike clustering Coding Course Demo Course Report D3.js data Data Analyst data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization Deep Learning Demo Day Discount dplyr employer networking feature engineering Finance Financial Data Science Flask gbm Get Hired ggplot2 googleVis Hadoop higgs boson Hiring hiring partner events Hiring Partners Industry Experts Instructor Blog Instructor Interview Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter lasso regression Lead Data Scienctist Lead Data Scientist leaflet linear regression Logistic Regression machine learning Maps matplotlib Medical Research Meet the team meetup Networking neural network Neural networks New Courses nlp NYC NYC Data Science nyc data science academy NYC Open Data NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time Portfolio Development prediction Prework Programming PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn Selenium sentiment analysis Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau team TensorFlow Testimonial tf-idf Top Data Science Bootcamp twitter visualization web scraping Weekend Course What to expect word cloud word2vec XGBoost yelp