NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R > Data Based Hotel Reservation Insights

Data Based Hotel Reservation Insights

Douglas Pizac
Posted on Feb 8, 2021

 

R Shiny app

GitHub repo

Linkedin

Data Science Background

For my R Shiny project, I downloaded a dataset from Kaggle that was derived from a white paper in Data in Brief. The dataset contained over 120,000 reservations from two Portugal hotels: a resort hotel in the southern coastal city of Algarve and a city hotel in the capital city of Lisbon. Check-in dates ranged from July 2015 to August 2017. The distribution wasnโ€™t even, as two-thirds of the reservations were for the city hotel in Lisbon.

Cleaning the data to make it appropriate for analysis was a challenging task. Countries were in an unidentifiable format, booking date was not provided, and there was no information on total nights stayed. Therefore, I had to join an ISO dataset from DATAHUB to the dataset and create new columns through calculating time differences and summarizing pertinent information.

The goals of this R Shiny app were to:

  1. Calculate the year-over-year changes in revenue for both hotels, dividing revenue streams by season.
  2. Obtain more information about the guests checking in: Where they were from, how and when they booked their reservation, and any insights that could be helpful in understanding the client base.
  3. Evaluate a subgroup of these reservations: guests who chose to cancel their stays. From there, see if there are any underlying factors that may contribute to guest cancellations.

With these insights, hotels could make better data-driven decisions that could help increase the number of bookings, improve guest retention, decrease the number of cancelations, and ultimately boost revenue.

 

Hotel Revenue Data

Total revenue for both hotels increased year-over-year by season. This is especially important for the resort hotel, as summer revenue comprises a large majority of the hotelโ€™s total yearly revenue. Seasonal revenue for the city hotel is relatively constant for the fall, spring and summer seasons, but drops off during the winter. Seasons were defined as follows:

Spring = c('March', 'April', 'May')

Summer = c('June', 'July', 'August')

Fall = c('September', 'October', 'November')

Winter = c('December', 'January', 'February')

Hotel reservation insights

Comparing hotel revenue by season and type

 

 

A limitation of the dataset is the date range available or making seasonal comparisons. For example, based on my definition of seasons, Summer 2015 revenue does not have reservation data for June, as the dataset begins in July. Also, the Winter seasons are non-contiguous, as December 2016 is grouped with January/February 2016, which are technically two separate Winter seasons in the hotel industry. Further research into how the hotel industry defines seasons based on date ranges would provide for a more precise analysis on Seasonal revenue.

When looking at the distribution of what guests pay by season and by year, city guest revenue is clustered around $200-300 per stay. For the resort hotel, revenue per stay in the summer is higher on average than any of the other seasons.

There was an interesting finding for repeat guests at the resort hotel. The more times a guest returned, the less they paid on average per stay. This raises many questions, some of which likely will remain unanswered due to the name of the hotel in question being withheld. Is the hotel part of a chain?

If it was, did returning guests accrued enough loyalty points to earn a complimentary stay? Did they stay fewer nights in their subsequent visits and therefore paid less in their overall stay? Or did they figure out through experience which dates were cheaper to visit? More data would help to answer these questions. However, from what we know, the resort hotel focusing on attracting new guests could help boost revenue as they tend to spend more per stay than returning guests.

 

Hotel reservation insights

Resort hotel guests spend less per returning stay on average

 

Guest Information Data

Most of the guests at these two hotels are residents of Portugal. The remaining top 10 guest nationalities include countries outside of Europe, such as China and Brazil. The most popular booking method for most regions/continents were through online travel agencies (Expedia, Priceline, Hotels.com, etc.). Based on these findings, the hotel marketing division could focus the majority of their advertising budget towards these online booking websites to attract new and existing guests to visit their properties.

 

Cancellation Data

The most common lead time (the period between booking date and check-in date) was actually the same day, followed by bookings made within one week of check-in. When plotting lead time against cancelation time (the average time between the cancel date and check-in date) there appears to be a linear relationship regardless of hotel type.

Hotel reservation insights

Linear relationship between booking and cancelation windows

 

For example, based on this dataset, canceling guests who book their reservation 15 days before check-in, on average, will cancel approximately 10 days before check-in (5 days after booking). With this information, hotel managers could advertise rooms around these windows of predicted cancelations to maximize capacity. What would help with these predictions would be to identify particular characteristics that make a guest more likely to cancel.

One factor I was especially interested in was if ever canceling a previous stay was linked to canceling your current/future stay. To test this, I created two groups: a group containing guests who had canceled one or more previous stays, and a group with no history of cancelations. After running a statistical analysis, I concluded that having a history of canceling stays makes you more inclined to cancel your future stays.

While this finding seems intuitive, it adds more specificity to the hotel manager example. If the manager sees a guest that has canceled a stay at their hotel previously, they can make a more informed assumption when it approaches that guestโ€™s predicted cancelation date to increase advertisements of their particular room type.

Another test I pursued was if being assigned a different room type than what you requested was related to canceling your stay. While the statistical test revealed some relationship, it was not what I originally thought. Some did cancel when they were informed they would not get the room they requested, but not all.

Upon reflection, I considered that in this particular situation a guest may have been upgraded from the room type they booked. Another limitation of this dataset is that these room types are encoded so that you cannot determine what the room includes (like which is a Queen bed, and which is an executive suite). If this data were available, I could more finely tune these insights and create an additional parameter to help predict whether or not a guest is likely to cancel their stay.

 

Conclusions/Future Work

After cleaning this hotel dataset, I used my R Shiny dashboard to explain that both hotels had increased revenue from 2015-2017, identified the most popular seasons to book stays, how online travel agencies are the most common way to book, and unearthed several insights that would hopefully lead to better data-driven decisions within hotel management. However, there are some ways I would like to improve this project.

One idea I would like to explore is creating a machine learning model that would take a greater number of parameters to predict whether a guest would cancel their stay or not. I would also like to do more research into the hotel industry, such as season length and dates, so I could add more relevant context to these analyses.

If you appreciated my work, or have any further questions, please connect with me on LinkedIn and look up my other projects on GitHub.

The skills I demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

 

About Author

Douglas Pizac

After spending over six years working in academic research, I am transitioning into the exciting world of data science. When I am not trying to unveil new data-driven insights, I enjoy traveling, exercise, and spending time with friends...
View all posts by Douglas Pizac >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Data Analysis
Car Sales Report R Shiny App
Data Analysis
Injury Analysis of Soccer Players with Python
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application