NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Data Visualization > Pursuit of Happiness

Pursuit of Happiness

Shivakumar Ranganathan
Posted on Jul 23, 2017

 

Background

As per the Merriam-Webster dictionary, happiness is defined as a state of well-being and contentment. Over the years, several attempts have been made by philosophers and researchers to quantify happiness (for instance, see [1,2]). Such measures have then been used to determine the overall happiness levels of nations in the world. One such significant survey was conducted by Gallup World Poll and the data from this study was compiled in the World Happiness Report. The data from this study is available on Kaggle for the years 2015, 2016 and 2017. As per this study, six key variables play a role in determining the overall happiness of a nation. These includeโ€”

  1. GDP per Capita in terms of Purchasing Power Parity: The data for this variable was obtained from the World Development Indicators released by the World Bank.
  2. Life Expectancy: The data for life expectancy was obtained from World Health Organization along with the World Development Indicators.
  3. Family or Social Support: โ€œIf you were in trouble, do you have relatives or friends you can count on to help you whenever you need them, or not?โ€
  4. Freedom: โ€œAre you satisfied or dissatisfied with your freedom to choose what you do with your life?โ€
  5. Generosity: โ€œHave you donated money to a charity in the past month?โ€
  6. Government Corruption: โ€œIs corruption widespread throughout the government or notโ€ and โ€œIs corruption widespread within businesses or not?โ€

Data for variables 3-6 (above) were collected based on binary responses to Gallup World Poll questions. The purpose of this blog and the shiny application is to provide life to the available raw data with the aid of visual graphics and to employ a bit of statistics to assess the importance of each of these variables on the overall happiness of various countries around the world.

Shiny App Layout and Design

The raw data from Kaggle was available as three separate Comma Separated Values files. The data in these files did not contain the latitude and longitude information that was necessary for constructing the Geo map using the gvisGeoChart function. Therefore, the package โ€˜rworldmapโ€™ was used to import the latitude longitude information. Finally, the package โ€˜dplyrโ€™ was used to clean up the data and the function โ€˜rbindโ€™ was used to generate a single dataframe that was stored as Happiness_Data.Rdata file for data visualization and statistics.

With regards to the design of the shiny app, the cerulean theme from shinythemes was chosen for its simplicity. The app allows users to select a variable and year to interactively display various visualizations. All the source codes for this app are available on GitHub.

Data Visualization & Statistics

Several visualizations tools were employed to better understand the effect of each variable on the happiness of the nation as described belowโ€”

  • World map: The function โ€˜gvisGeoChartโ€™ was used to creates contours of all the variables on the world map (see Figure-1). Green to Red coloring scheme was employed with the general interpretation that green color is closer to utopia (perfect country) while a red color indicates proximity to dystopia (an imaginary country that has the worldโ€™s least-happy people). It is evident from these plots that happier nations have lower corruption, higher life expectancy, high GDP and Freedom. Interestingly, the happiest countries are not necessarily as generous as some of the nations in Southeast Asia.

Figure 1: Visualizing each variable on the world map

  • Motion Chart: The inspiration for creating motion chart stem from Hans Rosling's TED talk as well as the Bubble Charts popularized by Professor Mike Ashby in the field of materials science. Motion charts show data in action and it is best visualized when used interactively. Visit the  shiny application for viewing the motion charts interactively. Motion charts are packed with all the information from the data frame and therefore display a variety of charts interactively. For instance, Figure-2 tracks the GDP and Life Expectancy of all nations from the year 2015 to 2017. Each country is a bubble in this motion chart and the size of the bubble is proportional to the total population of that country. The color of each bubble indicates the happiness rank with blue signifying happy nations and red highlighting unhappy nations. Motion charts also reveal the countries that have consistently (2015-2017) appeared at the top (or bottom) for each of the variables contributing towards the happiness score (see TABLE-1).

TABLE-1: Top and Bottom countries for all variables

Variable

Top

Bottom

Happiness Score

Switzerland (2015), Denmark (2016), Norway (2017) Togo (2015), Burundi (2016), Central African Republic (2017)

Life Expectancy

Singapore (2015, 2017) & Hong Kong (2016)

Sierra Leone (2015, 2016), Lesotho (2017)

GDP

Qatar (2015, 2016, 2017)

Congo (2015), Somalia (2016), Central African Republic (2017)

Corruption

Least corruptโ€”Singapore (2017), Rwanda (2015, 2016) Most corruptโ€”Indonesia (2015), Bosnia and Herzegovina (2016, 2017)

Generosity

Myanmar (2015, 2016, 2017)

Greece (2015, 2016, 2017)

An interesting feature of the motion plot is to enable the trails feature to track the progression of specific countries (bubbles). For illustrative purposes, Burundi, Syria, Nigeria and Switzerland were chosen for the trail plot solely based on the GDP. It is evident from the trail plot that the trajectory of these nations from 2015 to 2017 had a negative slope indicating that although the GDP increased during this time frame, the life expectancy values have come down. This observation holds true for most of the other nations as well. The negative slope is steep for Syria highlighting a significant decrease in life expectancy since 2015. Also, Syria and Nigeria appear to have similar scores for the GDP, but the life expectancy in Nigeria is significantly lower than Syria. Despite this, Nigeria seems to be relatively happier than Syria. It can be a good exercise for the reader to interactively investigate the motion charts further and determine if this data along with proximity of Syria to Europe provides a rationale for the influx of refugees over the past three years.

 

 

Figure 2: Motion charts

  • Box and Density Plots: We next focus on the box and density plots to view the effect of all the variables on the happiness score grouped by the specific continent. For the sake of discussion, only the plots for the year 2017 is discussed in this blog (see Figure-3). The shiny application gives the user the option of selecting the year to plot the box and density plots. It is evident from these plots that Australia and North America are the happiest regions with less variability from one country to another. Although, Europe has some of the happiest countries in the world (a lot of Nordic countries), there are several nations in Europe that are relatively unhappy (many countries in Southeast Europe). Likewise, most of the countries in Asia and Africa rank low on the happiness score and there is a significant variability from one country to another.

Figure 3: Box and Density plots

  • Correlation plot: This plot highlights the correlation between all the variables. A dark blue color indicates a strong positive correlation and a dark red color indicates a strong negative correlation. A white color indicates no correlation. Results based on a significance test with 95 % confidence level have also been superposed on this plot. Cells with 'X' indicate no significance between the variables based on this test. As expected, there is a strong dependence between GDP, Life Expectancy and the Happiness Score. One interesting observation from this plot is the fact that a nationโ€™s generosity is not related to the GDP. In fact, Myanmar is the most generous nation and the data reveals that Syria is more generous than countries like United States and Germany. On a lighter note, it appears that Latitude has some correlation with Economy and Life Expectancy, whereas the Longitude does not. It does appear to make sense since there is a directional dependence based on whether a country lies above the Equator or below and the data appears to have captured this effect.

Figure 4: Correlation plot with significance

  • Tree map: As a reader of this blog, I am sure there is curiosity to view the ranking list of the happiest and least happiest nations in the world. The list of countries is displayed as a Tree plot on the shiny application for the year as input by the user. For this blog, the rankings are presented only for the year 2017 (see Figure-5). The coloring scheme used is such that a darker green color indicates a happier nation.

Figure 5: Tree plotโ€”Ranking the happiest and the least happiest nations in the world

Conclusion

Visualization and Statistics bring life to the raw data and offer unparalleled insights into the relationship between the variables contributing to the happiness score.

Shiny App

https://srangan3.shinyapps.io/Happiness_Project/

References

[1]  Kalmijn, Wim, and Ruut Veenhoven. โ€œMeasuring inequality of happiness in nations: In search for proper statistics.โ€ Journal of Happiness Studies 6.4 (2005): 357-396.

[2]  Frijters, Paul. โ€œMeasuring happiness, The Economics of Well-Being.โ€ Journal of Economic Psychology 53 (2016): 180-183.

About Author

Shivakumar Ranganathan

Shivakumar Ranganathan (Kumar) earned a PhD in mechanical engineering from the University of Illinois at Urbana-Champaign. He has a wide range of interests in Engineering, Medical Implants, Education and Data Science.
View all posts by Shivakumar Ranganathan >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Data Analysis
Car Sales Report R Shiny App
Data Analysis
Injury Analysis of Soccer Players with Python
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application