NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Data Visualization > A Data Analysis of NYC311 Noise Complaints

A Data Analysis of NYC311 Noise Complaints

M. Aaron Owen
Posted on Oct 17, 2017
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Introduction


Launched in 2003, NYC311 is an information hub created by the New York City government that provides data and information on and access to over 3600 non-emergency government services.

Originally designed to filter non-emergency calls away from the emergency phone line, 911, NYC311 receives service requests and complaints 24 hours a day, seven days a week, 365 days a year via phone, email, and text in over 175 languages. Service requests can range from inquiries regarding trash collection, voting locations, businesses licensure, and even parking tickets, and complaints can include a wide range of issues including, apartment heating and cooling, street and sidewalk conditions, noisy neighbors and surroundings, and many more.

Since 2010, NYC Open Data has made all NYC311 service requests and complaints publicly available. Here I analyze a subset of these data, those filed under "noise complaints," to provide insights into possible avenues by which NYC311 might improve upon its mission to "provide the public with quick, easy access to all New York City government services and information..."

See my GitHub for access to the code for this project.

 

Data Insights Investigated


Excluding complaints from 2017, the dataset contains over two million entries, with each complaint accompanied by more than 50 attributes describing it. The attributes I used in my analyses included the times the complaint was filed and resolved, the type of noise the complaint was filed under, and the location of the complaint. I aimed to use these analyses to understand the following:

  • the most common complaints
  • the hours, months, and years with the highest complaint frequencies
  • the rate at which different complaint types are resolved
  • how the features above varied between the five boroughs

These analyses can be used to improve NYC311 services by identifying deficiencies in available information for certain complaints, allowing for predictions regarding the times of day or year when complaints surge, and pinpointing which complaint types and boroughs have relatively poorer complaint resolution times.

 

Data Analyses and Visualizations


There are over 35 complaint type descriptors in the dataset that I grouped into 11 categories. The figure below shows that, for all years and all boroughs, the Loud Music/Party complaint was by far the most frequent, comprising nearly 53% of all complaints. The top three complaint types across all boroughs, Loud Music/Party, Banging/Pounding, and Loud Talking are also the top three complaint types within each borough, with the exception of Manhattan, where Construction is the second most frequent complaint type. See my Shiny app* to toggle between years and boroughs.

Volume of Complaints

A Data Analysis of NYC311 Noise Complaints

 

Visualizing all complaints through the years shows that the total number of complaints filed have increased each year. This trend is also seen within each borough except between the years of 2010 and 2011 where some boroughs showed a slight decrease followed by a large increase in 2012. See my Shiny app* to toggle by year and borough.

Years

A Data Analysis of NYC311 Noise Complaints

 

The figure below, which includes data from all complaint types, all boroughs, and all years, describes the distribution of complaints filed during each hour of the day. Disproportionately more complaints were filed in the early morning and nighttime hours than during the day, and this trend is also seen within each borough and year, but not for each complaint type. See my Shiny app* to toggle complaint type, year, and borough. The horizontal line across the figure is the Chi Square goodness of fit expectation, which shows the number of complaints expected to occur during each hour if each hour had the same number of complaints.

Hours

A Data Analysis of NYC311 Noise Complaints

 

Similar to the hours of the day, the total number of complaints for all complaint types, years, and boroughs was not evenly distributed across months. More complaints were filed during the summer months and fewer were filed in months with colder temperatures. Also similar to the hours of the day, this trend is seen across all years and boroughs, but not all complaint types. For example, the most Banging/Pounding complaints were filed during the winter months. See my Shiny app* to toggle complaint types, years, and boroughs. The goodness of fit expectation shows the number of complaints expected for each month if all months had the same number of complaints.

Month

 

Overall, when including all complaint types and years in the analysis, the highest frequency of complaints occurred in Manhattan, and this trend is also true within each year. While Manhattan has the third largest population of the five boroughs at ~ 1.6 million (Queens and Brooklyn are ~ 2.3 and ~ 2.6 million, respectively), its population density is by far the highest at nearly 71,500 people per square mile.

This figure is almost twice the population density of the next most densely populated borough, Brooklyn, at nearly 37,600 people per square mile. This marked difference in population density likely explains the high volume of complaints found in Manhattan. This trend, however, is not the same for each complaint type. For example, Queens and Brooklyn have more Alarm complaints than Manhattan. See my Shiny app* to toggle, complaint type, year, and borough.

 

An analysis of variance (ANOVA) of the total data set suggests that the boroughs do differ significantly in the rate at which complaints are resolved. Including all complaint types and all years, Manhattan has the highest (i.e., slowest) log mean complaint time resolution, despite having the lowest median (F4, 2014390 = 2445, P < 0.001). Letters differences above boroughs correspond to statistical differences at P < 0.001, while shared letters signify no difference.

 

 

 

Similarly, different complaint types differ significantly in their resolution times (F10, 2014384 = 265193, P < 0.001) through all years and boroughs. Letter differences correspond to statistically significant differences at P < 0.001. Luckily for NYC residents, complaints related to noisy neighbors (i.e., Banging/Pounding, Loud Music/Party, Loud Talking, and Loud TV) are resolved the fastest of all types, and this trend is seen through all years and boroughs. See my Shiny app* to toggle between these variables.

Resolution Times

 

Conclusions


The results of these visualizations and analyses reveal important insights into the volume and distribution of noise complaints filed with NYC311. The identification of these trends provides several routes by which NYC311 can build and improve upon their goal of providing the public with fast and easy access to the many governmental services available. Specifically, NYC311 can now:

  • alter staffing to correspond with hours and months of high complaint volume
  • predict future surges in filed complaints
  • work towards improving resolution times for different complaint types
  • develop strategies to reduce resolution times in Manhattan, which has the highest complaint volume and slowest complaint resolution time

 

Future Directions


The short amount of time allotted for research on this project limited the scope of the analyses. Future investigations of these data will benefit from incorporating demographic and socioeconomic data of the complaint areas, refining the analyses to specific neighborhoods rather than just boroughs, and finally by parsing through the myriad resolution types provided by NYC311 that described how each complaint was resolved.

For more information and many more visualizations of the data, including an animated heat map of complaints through the months and years, see my Shiny app, and visit my GitHub repository. Below is a look at the homepage of the full Shiny app*.

*Note, Shiny's free subscription does not support large data files, so the data set displayed in the app is reduced by 75%.

 

 

About Author

M. Aaron Owen

Aaron received his Ph.D. in evolutionary biology from the City University of New York. For his research, he designed and conducted field experiments in four countries, including India, for which he received a Fulbright Research Fellowship. These experiments...
View all posts by M. Aaron Owen >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Data Analysis
Car Sales Report R Shiny App
Data Analysis
Injury Analysis of Soccer Players with Python
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application