NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship 🏆 Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release 🎉
Free Lesson
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See 🔥
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular 🔥 Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New 🎉 Generative AI for Finance New 🎉 Generative AI for Marketing New 🎉
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular 🔥 Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular 🔥 Data Science R: Machine Learning Designing and Implementing Production MLOps New 🎉 Natural Language Processing for Production (NLP) New 🎉
Find Inspiration
Get Course Recommendation Must Try 💎 An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release 🎉
Free Lessons
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See 🔥
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > Advanced Regression Modeling on House Prices

Advanced Regression Modeling on House Prices

Ricky Yue and Jurgen De Jager
Posted on Sep 23, 2016

Introduction

The key question addressed in this blog is how we can better predict the sale prices of residential houses. The Ames Housing Price data set recently released on Kaggle is “a modernized and expanded version of the often cited Boston Housing dataset”. It covers all the recorded house sale price in Ames, IA from January 2006 to July 2010. With 79 explanatory variables describing almost every feature of residential homes, we aimed to apply data imputation, feature engineering and machine learning modeling to achieve a better predictive accuracy on the housing price.

The dataset contains 1460 observations in the training set and 1459 observations in the test set.   There are 46 categorical variables including 23 nominal and 23 ordinal ones, and 33 numeric variables in the dataset. The training set also has the sale price as response while the test set doesn’t.

Time Series

It’s important to note that the housing price data ranges from early-2006 to mid-2010. We should be aware that the subprime mortgage crisis happened during this period and contributed to the economic recession of December 2007 and June 2009. We drew the time series plot of monthly median house sale price below and decomposed the time series into trend and seasonality. As shown in the trend panel below, it’s obvious that the monthly median sale price had decreased steadily from early 2008 until late 2009.   That would indicate the house sales in Ames was no exception and was influenced by the mortgage crisis. We derived the trend index and seasonality index from the time series. Since the time series for sale price appears to follow a multiplicative way such that Sale Price = Trend * Seasonality * Cyclicality * Irregularity, we calculated the time series index:

TsIdx  =  TrendIdx * SeasonIdx / max(TrendIdx).

pic1

We considered using those three time series indices as predictors to test if global economy could help predict the housing sale price.

Exploratory Data Analysis

Below are boxplots of some categorical variables vs sale price.  They show consistency with our common sense that neighborhood, zoning, house quality and facility might distinguish the house value.

pic2

Scatterplots of some numeric variables are shown below. Some area related features such as lot area, 1st floor square feet, 2nd floor square feet, and house year built show positive correlations with sale price.

Feature Importance

pic5

Outliers

pic6

Modeling

We divided our modeling onto two sections. On the one side we modeled to achieve high predictive accuracy, and on the other side we modeled to maintain interpretation. We first discuss modeling that focused on achieving high predictive accuracy. As a first step we tuned parameters of all our base learners. We used grid-search to find the optimal parameters. Below are all the optimal parameters for our Generalized Linear Model, Neural Network, Random Forest and Gradient Boosted Trees .

GLM

screen-shot-2016-09-20-at-10-03-57-am

Neural Network

screen-shot-2016-09-20-at-9-56-39-am

Random Forest

screen-shot-2016-09-20-at-9-55-32-am

Gradient Boosted Trees

screen-shot-2016-09-20-at-9-53-57-am

Stacking

Next we used ensemble learning to combine our models. Ensemble machine learning methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms. Stacking is a broad class of algorithms that involves training a second-level "metalearner" to ensemble a group of base learners. The type of ensemble learning implemented in H2O is called "super learning", "stacked regression" or "stacking." Unlike bagging and boosting, the goal in stacking is to ensemble strong, diverse sets of learners together. In order to train the ensemble we did the following.

  • Trained each of the L base algorithms on the training set.
  • Performed k-fold cross-validation on each of these learners and collected the cross-validated predicted values from each of the L algorithms.
  • Combined the N cross-validated predicted values from each of the L algorithms to form a new N x L matrix. This matrix, along with the original response vector, is called the "level-one" data.
  • Trained the metalearning algorithm on the level-one data.
  • Used the "ensemble model" consisting of the L base learning models and the metalearning model, to generate predictions on a test set.

screen-shot-2016-09-18-at-7-31-16-pm

Model Averaging

Stacking did not give us the intended results, although it improved our score slightly and did put us in the top 20% of participants. We therefore decided to use model averaging. This is a simple strategy where you average out your predictions. Below is a simple visual representation.

screen-shot-2016-09-22-at-10-43-42-pm

screen-shot-2016-09-19-at-10-45-53-pm

Seeing as this approach gave us significantly better results, we decided to include even more models into the averaging, placing more weight on the models we know performed well.

screen-shot-2016-09-22-at-10-43-49-pm

screen-shot-2016-09-19-at-11-40-37-pm

This approach pushed up to number two in the leader board on Kaggle.

About Authors

Ricky Yue

As a data enthusiast, Ricky loves to think the real life issues in a quantitative way. He likes to talk about probability and alternative. He’s proud of his Bayesian skepticism based on years of scientific training. He was...
View all posts by Ricky Yue >

Jurgen De Jager

Jurgen’s fascination with analytics and its applications specifically within data science, led to his decision some time ago that this is the career path he wants to pursue post graduation. In anticipation of this, he has worked extensively...
View all posts by Jurgen De Jager >

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Pallavi January 1, 2017
Hi, Really appreciate your approach on time series analysis on sales price, due to changes in economic conditions. Can you please explain how did you do multivariate time-series analysis? It will be very helpful, if you could share just time-series decomposition codes? Thanks

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    © 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application