Data Analysis on Valuable House Features

The skills I demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.


If you're an investor looking to flip houses in Ames IOWA we will  evaluate the data on the house features that will bring the most return on your investment. Our objective is to come up with real numbers for each recommended feature. 

Our estimations are based on the housing data for the houses in Ames, IOWA sold for 2006-2010 (obtained from Kaggle). We cleaned and prepared the data to build a good model with it. A good model is essential in our case as we are going to use it extensively in our prediction of a gain that a potential investor will incur from each  feature. 

Data cleaning

The data consists of 2,580 observations and 81 features. After vetting the data for duplicates we were left with a total of 2,579 houses. We examined the columns and had to dismiss a few that do not bring value to our study ('MiscFeature', 'Alley') or could potentially skew the data ('PoolQC'). We inspected the dataset for multicollinearity - did not exclude any features in the result. We also carefully examined 'SaleCondition' feature and eliminated any 'abnormal' sales such as foreclosure etc. These sales account for 6% of total observations.  

Data on Feature Selection and Model Creation

We ran the prepared dataset through the multiple linear model. The data shows overfitting as the train and test data resulted in .95 and .93 R-squared respectively. To determine feature importance we used Lasso. It returned 15 features. 

Lasso selected features and corresponding coefficients:

Next, we evaluated p-values and R-squared using Statmodels. With the features selected by Lasso the model returned .92 and .91 R-squared for its train and test set. We left only 7 features for our final model, which returned .92 for both train and test set: 

Data Analysis on Valuable House Features
The returned R-squared equals .92 for both train and test data.

Data Feature Evaluation

With 'Overall Quality' and 'Overall Condition' being in our main set of features that need renovation,  we determined several additional features for evaluation: Kitchen Quality, Garage Finish, Exterior Finish, Basement, Heating and Central Air . We used coefficients to determine the return on investment. For the evaluation technique/method please refer to our GitHub

Kitchen Quality

The initial EDA has shown that Kitchen renovation would contribute to the sale of the house the most. The graph below shows how Kitchen Improvement contributes to the value of the house both percentage wise and in dollar amount. The 'Average' kitchen yields a 1.6% on the house. The 'Good' kitchen brings in 3.8% and 'Excellent' 8.7%. Also, please check the dollar amount on the y-axis. 

Data Analysis on Valuable House Features

Garage Finish

Garage Finish is the interior finish of a garage. Garage upgrade does not signify much difference in price. However there's still significant difference in value of a house with 'Finished' garage:

Exterior Finish

We evaluated different finish material. The graph below shows our findings. If you redo your Plywood home and give it the Vinyl finish, you'll have 4.2% return on your investment. However, we would recommend it only if the plywood on your home is in bad condition. It's worthy mentioning that Vinyl brings better return than Metal Siding or Wood Siding. 


In case of Basement, prices drop when it comes to "Excellent" basement condition instead of going up. However, they do go up a little when we compare "Average" Basement with "Good" basement.

Heating & Central Air

The initial EDA shows that most homes have heating at 'Good' and higher. 

Therefore, we skipped our calculations on Heating as it's cold in IOWA as it goes without saying that Heating is a certain return on investment. 

Same with Central Air. 94% of the house have a good Central Air. 

About Authors

Related Articles

Leave a Comment

No comments found.

View Posts by Categories

Our Recent Popular Posts

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI