NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > Data Study on Movie Rating Among Different Groups

Data Study on Movie Rating Among Different Groups

Jialan Zhu
Posted on Oct 22, 2018
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Data Study on Movie Rating Among Different Groups

Introduction and Motivation

Data shows people with similar attributes tend to get together and form a group. As a result, each group has unique personality or culture, which is different from other groups. These differences can be found in their everyday lives, such as shared  tastes in movies.

In this project, movie rating websites are considered as groups and website users as group members. I collected, compared, and analysed the differences in movie ratings  to reveal the differences among different website users. On that basis, I attempted to deduce the group personality.

The comparison and analysis are divided into two sections: domestic and international. The domestic section focused on two American movie rating websites, IMDb and Metacritics. We investigated to what extent groups can vary within one country. The international section also  explored the culture difference between the USA and China as reflected in the movie ratings.

 

Data Web Scraping

I used Scrapy to scrape data from two websites: IMDb.com (USA) and Douban.com (China).

Part I IMDb Website Scraping

IMDb is an acronym for Internet Movie Database. It is one of the largest online database of world films with about 83 million registered users. Besides the large volume of data, both IMDb ratings and Metacritics ratings can be found on this website, which saved my work to scrap Metacritics.com. These two American websites ratings werebe used to construct the domestic data set.

To keep the amount of scraping manageable, the movie field was narrowed to ones released in 2018.  Seven items are scraped from the website using Scrapy: the IMDb rating, Metacritics rating, movie names, genre, number of votes, movie rated, and gross. A data frame consisting of 6301 movies are generated. This is the raw data of the domestic data set.

 

Part II Douban Website Scraping

Douban.com is a Chinese social networking website also allows users to rate movies and write reviews. It is one of the most influential websites in China and has about 200 million registered users in 2013. The movie ratings from Douban.com will be used as international data set China part.

Scraping data from Douban.com is much more difficult than that from IMDb.com. The biggest problem is that the website is in Chinese, including the movie names. In order to create the international data set, we need to merge the data frame containing Douban ratings with the one containing IMDb ratings by movie names, and  it is not possible to do so movie titles in two different languages. So the first step was finding the movies' English title.Fortunately, the English title can be found in the movie detailed page. It is in a form mixed with its Chinese name like "ๆฏ’ๆถฒ๏ผš็ŸฅๅๅฎˆๆŠค่€… Venom, we can filter the English name out later.

The second problem I encountered is the forbidden access (403 ERROR) to the website when scraping. This  problem was solved by adding user agent heads to the urls. In the spider variable 'headers' is define as a user agent ({'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:48.0) Gecko/20100101 Firefox/48.0'}). Every time the urls are requested, add 'headers=headers' in the request function. This will catenate user agent head with urls and makes them accessible.

As a result of scraping the site for movie  titles, Douban rating, and number of votes with tags of 'American movie' and '2018',โ€ I had a data set of ,698 movies.

 

Data Manipulation

This section talks about how the domestic and international data set were created from raw data. The tools used are python3 as well as its famous packages: Numpy, Pandas, and Re. Some manipulation was necessary to make up for some shortfalls in the raw data.

he IMDb  data frame contains a lot of missing values. The domestic data set must contain both IMDb rating and Metacritics rating. After filtering out movies with both ratings, the number of movies shannk to 406 movies. They formed the  domestic data set. One column called 'movie_name_for_match' is created which uses only alphabet letters from movie names. It was used to merge Douban website data frame.

Similar operations were applied on the Douban website data frame. Then it was inner merged with domestic data set to form the international data set. Unfortunately, though, only 35 movies made it into  the international data set. Though the sample size was small, it did work for the aims of this project.

 

Data Analysis

Probability Distribution Function (PDF)

The PDFs show the rating distribution for two data sets. As we can see from the domestic rating PDF, IMDb is sharp and narrow, while Metacritics is flat and wide. This indicates that Metacritics users have more extreme opinions than IMDb users. But the most frequent rating scores of both user groups, the peak in PDF, are almost the same: 6.2.

For the international data set, first note that IMDb PDF in this data is consistent with that in domestic data set, which indicates that the international data set yielded reasonable results despite  its small sample size. Second, both IMDb and Douban user groups has similar distribution shape, but Douban rating PDF shift to right. This means that Douban users are generally more generous on movie rating scores than IMDb users.

Data Study on Movie Rating Among Different Groups

Exhibit 1. Movie score histograms of domestic (left) and international (right)  datasets

Group Correlation

the linear regression scatter plots show the correlation between domestic groups (IMDb user group and Metacritics user group), and between international groups (IMDb user group and Douban user group), respectively. The correlation r for the domestic groups is about 0.4, and for the international groups is about 0.4. The result indicates that IMDb user group has more in common with the Metacritics user group than with the Douban user group. The result makes sense because both the IMDb user group and Metacritics user group are from the same country.

Data Study on Movie Rating Among Different Groups

Exhibit 2. Group correlation scatter plot

Popularity Influence

A lot of people vote following the same way. Here I also checked which group  tends to think more independentlyby examining the relationship between the movie ratings and its popularity. Here I define  popularity as the number of votes. To minimize the biased impact of extremely large or small number of vote, I only used movies with a number of votes within three standard derivations.

As we can see from the linear regression results, there is no significant correlation between movie popularity and movie ratings in all four plots. This indicates that popularity might not be an important influence on ratings.

Exhibit 3. Correlation between movie score and popularity

Genre Preferences

To find the favorite genre of each group, two data sets are grouped by genre.

The pie charts illustrate the numerical portion of each genre. Drama is the dominant genre in the domestic data set and exceeds 25% of the total movie number. In the international data set, because of the merge with Douban data set, the  drama share decreased, while the share of genre action, adventure, and thriller increased a lot. Aso China is not an English-speaking country or one that has much in common with American culture, American movies with less conversion, less cultural background, and more action are likely to appeal more to Chinese audiences.

Exhibit 4. Genre percentage in domestic (left) and international (right) datasets

The bar plots below  show the rank of average movie scores for each genre in each group. Only movies with more than 5% of the total number are selected to minimize the biased ratings. The highest rated genre is drama for both domestic groups. For the international data set. Though ranks are different, average ratings are very close for the top 5 genres.

Exhibit 5. Genre ranks for each group

 

About Author

Jialan Zhu

View all posts by Jialan Zhu >

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application