NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Data Visualization > Data Studying The Unicorns in the NBA

Data Studying The Unicorns in the NBA

Sam Marks
Posted on Jun 19, 2018
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

A visual data exploration of the 2017-2018 NBA landscape

Data shows the modern NBA landscape is rapidly changing.

Steph Curry has redefined the lead guard prototype with jaw-dropping shooting range coupled with unprecedented scoring efficiency for a guard. The likes of Marc Gasol, Al Horford and Kristaps Porzingis are paving the way for a younger generation of modern big men as defensive rim protectors who can space the floor on offense as three-point threats. Then there are the new-wave facilitators - LeBron James, Draymond Green, Ben Simmons - enormous athletes who can guard any position on defense and push the ball down court in transition.

For fans, analysts and NBA front offices alike, these are the prototypical players that make our mouths water. So what do they have in common?

For one, they are elite statistical outliers in at least two categories, and this serves as the primary motivation for my exploratory analysis tool: To identify NBA players in the 2017-2018 season that exhibited unique skill sets based on statistical correlations.

To access the tool, click here.

The Data

The tool uses box score data from the 2017-2018 NBA season (source: Kaggle) and focuses on the following categories: Points, rebounds, assists, turnovers, steals, blocks, 3-pointers made, FG% and FT%. I also used Dean Oliverโ€™s formula for estimating a players total possessions (outlined here).

To assess all players on an equal scale, I normalized the box score data for each player. For ease of interpretability, I chose to use โ€œper 36 minuteโ€ normalization, which take a playerโ€™s per-minute production and extrapolates it to 36 minutes of playing time. In this way, the values displayed in the scatterplot represent each playerโ€™s production per 36 minutes of playing time.

To ensure that the per-36 minute calculations did not generate any outliers due to small statistical samples, I removed all players with fewer than nine games in the season, as well as players who averaged three minutes or less per game.

Using the tool: A data demonstration

The tool is a Shiny application intended to be used for exploratory analysis and player discovery. To most effectively understand and interpret the charts, you can follow these steps:

Step 1: Assess the correlation matrix

The correlation matrix uses the Pearson correlation coefficient as a reference to guide your use of the dynamic scatter plot. Each dot represents the league-wide correlation between two statistical categories.

Data Studying The Unicorns in the NBA

The color scale indicates the direction of the correlation. That is, blue dots represent negatively correlated statistics, and red dots positively correlated statistics. The size of the dot indicates the magnitude of the correlation - that is, how strong the relationship is between the two statistics across the entire league. Large dots represent high correlation between two statistics, while small dots indicate that the two statistics do not have a linear relationship.

Step 2: Select two statistics to plot for exploration

We can get a flavor of these relationships as we move to the scatterplot. (Follow along using the app.) For the purpose of identifying truly unique players, letโ€™s look at a pairing of negatively correlated statistics with high magnitude (i.e. a blue, large dot): 3-pointers made (โ€œ3PMโ€) vs. Field goal percentage (โ€œFG%โ€).

Step 3: Explore

It makes sense intuitively why these are negatively correlated - a player making a lot of threes is also attempting a lot of long-distance, low-percentage shots. Given the value of floor-spacing in todayโ€™s NBA, a high-volume 3-point shooter who is also an efficient scorer possesses unique abilities. So, letโ€™s select FG% for our x-axis and 3PM for our y-axis (using the dropdowns in the menu bar), and see what we find...

The two dotted lines within the scatterplot represent the 50th percentile for each statistic. In the case of FG% vs. 3PM, we turn to the upper right quadrant, which represents the players who are above average in both FG% and 3-pointers made. To focus our analysis, we can zoom in on this quadrant for a close look.

To zoom, simply select and drag across the plotted space you want to zoom in to, in this case the upper right quadrant. You can also filter by position by simply selecting specific positions in the legend.

Scroll over a point to see who the player is, as well as their per-36 statistics. At the top of our plot, no surprises here: Steph Curry. While his 4.7 threes per 36 minutes leads the league, what truly separates him is his 50% efficiency from the field. But we already know that Steph is an exceptional anomaly, so who what else can we find?

Findings

While several superstars can also be found at the top of our plot - Kevin Durant, Kyrie Irving, and Klay Thompson stand out - we have quite a few role players up there as well: Kyle Korver, J.J. Redick, Kelly Olynyk and Joe Ingles. These are quality reserves who may not wow us with their overall statistical profiles, but play a crucial, high-value role on teams by spacing the floor without sacrificing scoring efficiency.

Step 4: Repeat

I recommend starting your exploration on the blue-dots of the correlation matrix - blocks vs. threes, rebounds vs. threes, assists vs. blocks, for example. These are where you can identify players with the most unique skill pairings across the league. (Note: When plotting turnovers, be sure to focus below the median line, as it is better to have low turnovers than high.)

For fantasy basketball enthusiasts, this is a great tool to identify players with specific statistical strengths to construct a well-balanced team, or complement your roster core.

Conclusion

I really enjoyed building this tool and exploring its visualization of the NBA landscape. From an interpretability standpoint, however, it is not ideal that we can only focus on one player at time. To improve on this, I plan include an additional table that provides a deeper look at players that fall above the median line for both X and Y statistics. In this way, we can further analyze these players across a larger range of performance variables.

 

About Author

Sam Marks

Sam is an experienced marketing professional with a growing skill set in data science. Having worked at several successful startups during their early years - including Warby Parker (4 years) and Flywheel Sports (2 years) - Sam has...
View all posts by Sam Marks >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Data Analysis
Car Sales Report R Shiny App
Data Analysis
Injury Analysis of Soccer Players with Python
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Searching For Unicorns (And Other NBA Myths) โ€“ Mubashir Qasim June 20, 2018
[โ€ฆ] article was first published on R โ€“ NYC Data Science Academy Blog, and kindly contributed to [โ€ฆ]
Searching For Unicorns (And Other NBA Myths) | Smart Solution 4.0 June 20, 2018
[โ€ฆ] article was first published on R โ€“ NYC Data Science Academy Blog, and kindly contributed to [โ€ฆ]

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application