NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Data Visualization > Data Trends in Teen Risk Behavior in NYC

Data Trends in Teen Risk Behavior in NYC

Brandy Freitas
Posted on Apr 28, 2017
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.
Contributed by Brandy Freitas as part of the Spring 2017 NYC Data Science Academy 12-Week Data Science Bootcamp. This post is based on the first class project, due Week 3 - Exploratory Visualization & Shiny. A link to the Shiny App is here: Youth Risk Behavior Survey App.

Introduction:

Take a second to think about a teenager in your community, your borough, your neighborhood. Think about who they are, what they look like, what is happening in their life.
Take another second to think about how much power we, as voting adults, advertisers, policy makers, have over an entire population with its own culture, norms, issues and struggles. We make the policies and decisions that allocate resources like time, money, and education for them. Often, adults have a notion that โ€œwe know bestโ€ how to help our youth, but I wonder: do we really know whatโ€™s going on with them? Are we in touch with the reality of the youth experience in our community?
I was drawn to a particular study, the Youth Risk Behavior Survey (YRBS), conducted by the Center for DiseCDCWebsitease Control (CDC) since the 1990โ€™s. The survey itself looks at eating habits, exposure to violence, sex, drugs, physical activity, and many more variables related to the physical and emotional health of youth. It offers a longitudinal view of the well-being of teens from across the country, in both rural and urban settings, and was designed to determine the prevalence of health behaviors, assess whether they increase, decrease, or stay the same over time, and examine their co-occurrence. The CDC adds questions over the years in response to technological advancements and trends, as well, such as questions about texting while driving and cyber bullying.

The Data:

I downloaded the combined YRBS dataset in the available ASCII format from the CDC's website, and converted to .csv file using an SPSS script and IBM's SPSS software package. Since my questions were framed around understanding my local youth, for whom my voting patterns and preconceptions probably matter most, I wanted to work with data on teens from the five New York City boroughs.
Using R, I filtered the data based on location, variables that I was interested studying (based on question type), and cleaned them up to remove missing values in key variable columns (grade, age, sex, etc) that were required for my analysis. Originally, the file contained 320K rows with 210 variables, and was reduced to 64K rows and 27 variables. I also recoded the data to make it easier to understand, as most of the variables included were coded for simplicity (ie, 1 = Female, 2 = Male), which was difficult to manipulate and interpret. I used ggplot2, Leaflet, plotly, and the Shiny Dashboard to visualize the data. A sample of the data manipulated in R is below:
datatable
The CDC weights the data to make them representative of the population of students from which the sample was drawn. Generally, these adjustments are made by applying a weight based on student sex, grade, and race, so that researchers accessing the data are able to use it as is without worrying about selection bias. Borough data were from seven surveys over twelve years (the odd years from 2003-2015), and there were about two- to three-thousand respondents from each borough per year.
I narrowed my focus down to obesityโ€”which the CDC determines based on height, weight, age and genderโ€”illegal drug use, and suicidal ideation. I was interested in studying differences in gender, borough, grade level, and the effects over time.

 The App's Data:

 My app is designed to offer a visual representation of some of the data from the YRBS, and to encourage the user to interact with the findings.

I. Teen Demographics:

The landing page of the app is a Leaflet map of the NYC region, with markers for each borough showing the racial breakdown of the teens going to school there. I wanted to allow the user to be able to explore the demographics of the region, and draw their own inferences about variations between the teen population and the Census-reported overall population.
demomap
For instance, the racial makeup of the students in public and private schools in Manhattan is not representative of the resident population.
                                           overall_zoom                   teens_zoom
Does this distribution of teen demographics reflect a changing trend in the resident population of the five boroughs? What are the social and political implications of this kind of population disparity?

II. Drug Use:

The purportedly worsening drug habits of urban youth have often been the subject of crime dramas, early morning news shows, and impassioned political speeches. We have also heard that things like legalization of marijuana in the US will increase the usage of marijuana among youths due to a shifting perspective of morality. I wondered, though, whether teens really are consuming more illegal drugs.
In this tab of the app, we can see the drug use over time of particular illegal drugs, grouped by borough. Below we see the trends in marijuana use over time:
druguse
For the drugs that I looked at (Cocaine, Methamphetamines, Heroin, Ecstasy, Marijuana), you can see that there is a downward trend in many of the boroughs, and that the overall percent of students reporting using Ecstasy, Methamphetamines, and Heroin is very low. Digging deeper, I wonder: could we elucidate whether there is a correlation between drug use and sexual promiscuity (which is surveyed by the CDC as well), or between drug use and measures of depression?
As a side note (or, in the ever-popular research science vernacular: 'Data Not Shownโ€™), during an initial look at racial differences in the data, I found that Asian teens were very unlikely to report having used drugs, while white teens typically reported the highest levels of trying illegal drugs. This is particularly interesting give than Staten Island, with the highest percentage of white teens of all of the boroughs, consistently has the highest drug use reported. I am, however, hesitant to place any significance on these findings until I understand more about reporting differences between populations.

III. Depression:

The National Suicide Prevention Resource Center estimates that 3.7% of the US's Adult Population have suicidal thoughts, and 0.5% attempt suicide every year. If we look at the percentages among these populations (which is a percentage of students with either suicidal thoughts or actual attempts), though, you can see that they are significantly higher than that of the adult population.
The user can explore many questions in this tab: Is depression in males increasing over time? Which boroughs tend to have higher depression rates? How has mental health trended over the year, and what might cause this?
Suicide
For perspective on mental health aid available to teens in NYC, there are 231K high school students in NYC with over 200 high schools in the Bronx alone. However, according to the NYC Department of Education, there are only 200 Mental Health Clinics available in schools in all five boroughs.
A lot of questions came up for me from this, particularly from a policy standpoint. The CDC has been mainly focused, both programmatically and fundidepressionng-based, on HIV, STD, and pregnancy prevention efforts in the nation's schools. Based on this depression and mental health data, I wonder: Is this focus justified? Are mental health issues, which still appear to be under-funded and stigmatized, the basis of some of these risk behaviors?
Further questions that I would like to study from this dataset: Are the teens from boroughs that have a lower median income or a high report of violence more prone to depression? Do students who are overweight or obese, or students who identify as LGBTQ, show more signs of suicidal ideation? Does bullying contribute?

IV. Obesity:

For the US Teen population, 5th to 85th percentiles are considered normal weight and lie in the range 17-25. Under 17 is underweight, and over 30 is obese. I wanted to first focus in on this normal range, and designed my chart to present the user with the biologically more interesting section of the data. I wanted to draw attention first to the mass of the distribution, and the median of each group.
Take the Queens in 2015 here for example:
BMI2015
A quick guide to reading this box plot using the highlighted BMI:
  • 42.14 = Greatest BMI value
  • 31.54 = Greatest value, excluding outliers
  • 24.75 = 25% of students have a BMI over this value
  • 22.19 = 50% of the students in the sample have a BMI over this value (median)
  • 19.72 = 25% of the students have a BMI less than this
  • 13.15 = Minimum value, excluding outliers
Which means that about 25% of the students in Queens in 11th grade are overweight. If you look across the grade levels, you can see that there is an increase in the median consistently throughout high school. Are students getting heavier as they advance in grade level? What is causing this?
I also wanted to make sure that the user was able to interact with the data by being able to view the full range and whiskers. To get a perspective on the dataโ€™s distribution, we can zoom out to see which way the data sways. Unfortunately, you can see that it leans toward obese:
ObesityWhiskers2

Insightful Questions

This portion of the study brought up many avenues for further study. Which populations are most at risk (by race, gender, or some other factor), and can we identify them using the data here? For boroughs with better BMI stats (like Manhattan and Staten Island), what are they doing well, and could this be replicated in other areas? Regarding current policy trends, now that large urban centers are shifting away from the 'free and reduced lunch' model to the 'universal free lunch' model, will we see a shift in this, either in a positive or negative way? Could we make provided school lunches more nutritious? What could be done to improve education on weight and exercise in schools?

Final Notes:

This study offers an interesting snapshot of the mental and physical health of a very vulnerable portion of our society, and I am looking forward to digging deeper into the data to find more coincident variables and health outcomes. It is my strong suggestion, though, that the CDC offer zipped .csv files on their website, so that data enthusiasts would be more likely to access and analyze this study.

 

About Author

Brandy Freitas

View all posts by Brandy Freitas >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Data Analysis
Car Sales Report R Shiny App
Data Analysis
Injury Analysis of Soccer Players with Python
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Are the Kids Alright? Trends in Teen Risk Behavior in NYC | A bunch of data April 29, 2017
[โ€ฆ] article was first published on R โ€“ NYC Data Science Academy Blog, and kindly contributed to R-bloggers) Contributed by Brandy Freitas as part of the Spring 2017 [โ€ฆ]
anthony damico April 29, 2017
hi library(devtools) install_github("ajdamico/lodown") library(lodown) lodown("yrbss", output_dir="C:/My Directory/YRBSS")
Are the Kids Alright? Trends in Teen Risk Behavior in NYC โ€“ Mubashir Qasim April 29, 2017
[โ€ฆ] article was first published on R โ€“ NYC Data Science Academy Blog, and kindly contributed to R-bloggers) Contributed by Brandy Freitas as part of the Spring 2017 [โ€ฆ]

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application