NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Data Visualization > Journofile: A Personality Profiler of NYTimes Journalists

Journofile: A Personality Profiler of NYTimes Journalists

Samara Bliss and Joseph Lee
Posted on Nov 17, 2015

Contributed by Samara Bliss and Joseph Lee. They took NYC Data Science Academy 12 week full time Data Science Bootcamp program between Sept 23 to Dec 18, 2015. The post was based on their third class project(due at 6th week of the program).

Note: You'll find snippets of our code in the following post. For the full code please go to the github repository.

Introduction

Thanks to digital journalism, we have millions of opinions on practically every topic easily accessible at our fingertips. This revolutionary change in how we consume (and contribute to) news forces us to become critical thinkers, capable of evaluating the credibility of countless sources. But how can a reader efficiently evaluate an author's background, style, themes, biases, quirks, etc. without reading his/her entire collective works and biography? Enter Journofile--our solution to this problem. Journofile is a tool written in Python programming language that grabs the New York Times articles written by any inputted author and, using Natural Language Processing, analyzes the texts for most frequently used words, sentiment polarity, sentiment subjectivity, and, most importantly, personality.

Process

To begin, the articles from any given author are grabbed from the NYTimes using the openly accessible article search API. These queries return the URLs to the articles.

We then used the a combination of Python libraries Beautiful Soup and Goose Extractor to simultaneously scrape and parse the article contents. Beautiful soup was used primarily for exploring the tag structure of the HTML page, while Goose was the main packaged used for scraping. Below is a brief snippet of the Goose functions developed for this program. The extractWrapper function calls on the three previous functions to extract the URL text, the list of URLs, and the data of each text.

def extractArticle(url):
g = Goose()
article = g.extract(url=url)
return article.cleaned_text

def extractArticleList(datum):
archive = []
for ii in datum:
archive.append(extractArticle(ii))
return archive

def extractDate(lst):
dates = []
for ii in lst:
match = re.search(r'\d{4}-\d{2}-\d{2}',str(ii))
dates.append(str(match.group(0)))
return dates

def extractWrapper(name, number):
x=CollectPostHistory(name,number)
tmp = extractArticleList(x[0])
dates = extractDate(x[1])
raw = " ".join(tmp)
content = raw.encode('ascii', 'ignore')
return dates, tmp, content

Using the Natural Language Toolkit, we created a wrapper function that tokenizes and tags parts-of-speech to clean text, filters by tags so as to exclude conjunctives, prepositions, determiners, etc., and then casts the filtered text into a data frame that has been sorted by word frequency.


def castFreqDF(cleantext):

tokenized = word_tokenize(cleantext)
tags = nltk.pos_tag(tokenized)

def filteredtags(tags):
wantedTags = ["FW", "JJ", "JJR", "JJS", "NN", "NNP", "NNPS", "NNS"]
ftags = []
tagtag = []
for t in tags:
if t[1] in wantedTags:
ftags.append(t[0])
tagtag.append(t[1])
return ftags , tagtag

x = filteredtags(tags)
fdist = FreqDist(x[0])
taglist = x[1]
vocab1 = fdist.keys()
tmp1 = []
tmp2 = []

for ii in fdist:
tmp1.append(ii)
for jj in fdist:
tmp2.append(fdist[jj])

s1 = pd.Series(tmp1)
s2 = pd.Series(tmp2)

d = {"Word":s1,
"Count" : s2}
df = pd.DataFrame(d)
return df.sort(["Count"], ascending = False, axis = 0)

In order to demonstrate our code, we'll use NYTimes Opinion author, David Brooks. We'll use his name as our passed argument.

author = "David Brooks"
x = extractWrapper(author, 20)

The Seaborn package was used for most of our visualizations.

WordFreq

In order to get the sentiment polarity and sentiment subjectivity of each text we used a library called TextBlob. The polarity is on a scale of -1 to 1 and the subjectivity is on a scale of 0 to 1.

def sentimentpolarity(sentiment_list):

tri_list = sentiment_list
dates = tri_list[0]
articles = tri_list[1]
sample = []
polarity = []
subjectivity = []
tmp_dates = []

for ii in articles:
sample.append(ii
for jj in articles:
blob = TextBlob(jj)
polarity.append(blob.sentiment.polarity)
for kk in articles:
blob2 = TextBlob(kk)
subjectivity.append(blob2.sentiment.subjectivity)

for kk in range(len(articles)):
tmp_dates.append(dates[kk])

c1 = pd.Series(sample)
c2 = pd.Series(polarity)
c3 = pd.Series(subjectivity)
c4 = pd.Series(tmp_dates)

d = {"Sample":c1,
"Polarity":c2,
"Subjectivity":c3,
"Date":c4}
df = pd.DataFrame(d)

return df.sort('Date')

polarity
subjectivity

Lastly, in order to create an in-depth personality assessment of the author, we used a service powered by IBM Watson, the cognitive computing machine that famously won Jeopardy against Ken Jennings in 2011. The API is called Personality Insights and it uses the Linguistic Inquiry and Word Count (LIWC) program which compares the inputted text to internal dictionaries with psychologically-relevant tagging and percentages for each of its personality categories. The personality categories are based on needs, values, and the Big Five personality traits. To read more about the API take a look at this and to read more about LIWC try this. The API exists on the IBM cloud developer platform, Bluemix. We made a post request to the Personality Insights API, inputted the entire corpus of an authorโ€™s work, and the API returns the personality analysis as a JSON file. We then parsed the JSON output into a readable pandas data frame containing personality traits and corresponding percentages.


url = "https://gateway.watsonplatform.net/personality-insights/api"
username = "Your username"
password = "Your password

response = requests.post(url + "/v2/profile",
auth=(username, password),
headers = {"content-type": "text/plain"},
data=text)

x = json.loads(response.text)
y = x["tree"]["children"]
trait = []
percentage = []
for ii in y:
for jj in ii["children"]:
for kk in jj["children"]:
#print kk["name"]
trait.append(kk["name"])
#print kk["percentage"]
percentage.append(kk["percentage"])
if "children" in kk:
for zz in kk["children"]:
#print zz["id"]
trait.append(zz["id"])
#print zz["percentage"]
percentage.append(zz["percentage"])
else:
print " "

To visualize the personality assessment we used Bokeh, a new package designed by Continuum Analytics.

conscientiousness
opness
agreeableness
extraversion
emotional

needs

values

Again, please find our full code on our github.

About Authors

Samara Bliss

I'm an ex-medical school student turned data scientist, with an interest in health IT, health data analytics, hospital workflow/administration, digital/mobile health technology, and personalized medicine, as well as machine learning, natural language processing, cognitive computing, and deep learning.
View all posts by Samara Bliss >

Joseph Lee

A recent graduate from Northwestern University with a B.S. in Biomedical Engineering and a Minor in computer science, Joseph has a strong background in computer engineering and programming concepts. His previous work and academic studies contains a panoply...
View all posts by Joseph Lee >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Pandemic Effects on the Ames Housing Market and Lifestyle
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application