NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Capstone > Data Science for Semiconductor Manufacturing Process Control

Data Science for Semiconductor Manufacturing Process Control

Lorenzo Mangubat
Posted on Mar 10, 2021

The skills the author demonstrated here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Data tells us that semiconductor processes are arguably the most complex manufacturing processes today and provide the physical backbone of technology. A well-controlled process leads to high yield, high throughput, and low product variability. However, this is difficult to achieve because of the large number of parameters that interact with each other. Deciding what parameters should be in order to achieve best results is not always clear.

This data science project aims to explore three ideas for improving semiconductor processes:

  1. Accelerating inspection and failure feedback.
  2. Improving yield with better station-level decisions.
  3. Reducing product variability.

Traditional Process Control

Statistical Process Control commonly called SPC is used extensively in this industry. Consider the following case: the design calls for a 500 nm thick film. A start-up experiment is run. In this experiment, the deposition tool produces various thicknesses with a mean of 500 nm and a standard deviation of 5 nm.

The factory can then decide that the control limit is 1 standard deviation. Therefore, the module will try to deposit exactly 500 nm. When the film is outside of 495 to 505 nm, the lot is said to have failed. It may be rejected or sent on depending on the severity, but action must be taken on the tool.

Traditional Methods

With traditional methods, it is diffult to control for the relationships between parameters generated at different process steps called "stations". The most important relationships are indeed controlled and incorporated into feedback/feedforward loops.

Some examples are narrower pattern widths made wider by subsequent "undesired" lateral etching resulting in widths that are on target. However, this can only be done for a few parameters because of resource constraints, and because key relationships may not be apparent.

Data Preparation

Data is taken from UCI SECOM Dataset in Kaggle. There are 590 parameters and a pass/fail column. No specific information about each parameter is provided. Therefore, the analysis is agnostic to physical phenomena that can be predicted a-priori (i.e. film thicknesses can influence etch times, etc). Several operations were done to clean the data:

  1. Dropped columns with greater than 15% missing values.
  2. Drop columns with only a single repeating value.
  3. Drop one of each column pair that is correlated with a factor > 0.8.
  4. For the remaining columns, fill missing values with the column mean.

The fourth action is reasonable since these parameters are being controlled to some target value. Without knowing what those target values are, they can be approximated by the mean.

The fraction of missing values of all columns is as shown:

Data Science for Semiconductor Manufacturing Process Control

The correlation matrix is below. For clarity, only pairs with correlation factor >0.5 are colored. It is interesting that there are several diagonal beyond the main diagonal that are highly correlated. One feature of each correlated pair is dropped.

Data Science for Semiconductor Manufacturing Process Control

The Jupyter notebook for this project can be found here.

Optimizing a Random Forest Model

A scikit-learn Random Forest model was used to predict the pass/fail of each row using the given parameters. The main challenge with the data is that it is highly imbalanced. Only 8% of the rows are failures. Therefore, a blanket classification of "pass" would yield a score of 92%. But this is misleading.

The correct for this, BalancedRandomForestClassifier from imblearn was used instead of the more common RandomForestClassifier from sklearn. This model undersamples the majority class (i.e. "pass") to have a more balanced samping for each modeling tree. Number of trees was varied from 100 to 1,000. In general, more trees had higher accuracy. The final model used 1,000 trees.

Train | test score: 79% | 74%

  fail pass
precision
what % of this classification is truly this class?
16% 96%
recall
what % of what is truly this class was classfied as this?
58% 76%

Using Model to Improve Factory Decisions

The precision and recall of the fail class are low. However, this does not mean the model is not useful. It simply means that the model must be used correctly. Two applications are explored below.

Data Case 1: Accelerate inspection and feedback

If a lot is classified as "fail", there is still a good chance that it is actually passing. However, this could be enough to have the lot prioritized for closer inspection. The following process flow is proposed:

Data Science for Semiconductor Manufacturing Process Control

While the model is not perfect in flagging potential fails, it allows for the prioritization of which lots should be inspected first. While fail precision is low, the concentration of fails that would end up in close inspection is still 2X.

Data Case 2: Optimize parameters station by station

The model can be used by station engineers to decide what parameter to target based on 1.) what has already happened and 2.) assuming that downstream parameters will be their mean values. This is a reasonable assumption since the mean value is usually equal or close to the target values. In the above example case, a lot is at the station controlling parameter 59.

The lot ended up getting a value of 8.30 and failed. What if engineers at this station used the model to target a different value? What value should they target? The model suggests that the parameter should be 4.21 or less for the lot to have a good chance of passing. It is important to note that parameter control may not be perfect. For example, if 4.21 is the target, then the final result may be 3 or 5. In this case, engineers might want to target something lower to ensure being below 4.21.

Alternative Traditional Method

This is an alternative to the traditional method of targetting a population-wide control value and trying to get within the limits set by statistics of a distribution of lots. This method considers the specific history of this one lot.

What if parameter 59 ended up being 5.0? This is a marginal value and it is unclear whether the lot will pass or fail. This process can then be repeated in the subsequent stations where engineers can decide whether the lot can be saved if the required parameters to pass are achievable, or whether the lot should be scrapped early.

Using K-means Clustering to improve product variability

Intel, a leading U.S. semiconductor manufacturer is known for its philosphy of "copy exactly". This means that when a process in transferred from a development factory to a high-volume factory, engineers are challenged to replicate the tools, materials, recipes and operations as best as closely as they can. This same discipline is then maintained for succeeding high-volume factories. The idea behind this is that the customer should not care what factory a specific product came from. All Intel Core i7's of the same generation should all perform the same.

A scikit-learn K-means clustering model was used with clusters ranging from 1 to 9. Using the elbow method, it is shown that the optimal cluster number is between 2 and 3. A model with 2 clusters was used for further analysis.

Are the 2 clusters simply the "pass" cluster and the "fail" cluster? It turns out that it is not as shown in the table:

Cluster Passing rate N
0 92.8% 1,245
1 93.5% 322

There appears to be a majority cluster (cluster 0) and a minority cluster (cluster 1). This suggests that the process is yielding two different kinds of products.

The difference between 2 clusters

What is the difference between the 2 clusters? Normally, finding a difference would involve the following steps:

  1. Run a t-test or Analysis of Variance of all the parameters grouping by cluster.
  2. Get the p-value of each test. Conventially, p-values greater that 0.05 are said to be inconclusive.
  3. Rank the tests with increasing p-value. The tests with the lowest p-values are the biggest differences.

In this case, however, there is a big difference in population size (1,245 vs 322). SciPy suggests using the Kruskal test instead of ANOVA or t-test. The result of this process is 100 parameters with p-values <0.05.

The top suspect is parameter 162. Below is a boxplot of this parameter.

There is clearly a difference in this parameter between the clusters. A factory manager would prioritize scrutinizing this parameter with the goal of trying to eliminate this difference. Once this parameter is resolved or deemed untunable, then the factory manager can just go down the list.

Data Science Conclusion

To reiterate, the three ideas explored are:

  1. Accelerating inspection and failure feedback.
  2. Improving yield with better station-level decisions.
  3. Reducing product variability.

The methods proposed here cannot replace traditional operations done in semiconductor manfacturing. Traditional process control methods that have been refined over years will enable a player to compete in the semiconductor market. However, the novel methods proposed here can separate the good players from those that win the market.

About Author

Lorenzo Mangubat

I enable technologies to scale. My experience ranges from start-up development to high-volume manufacturing. I bring together structured problem-solving, data science, and operational discipline to drive improvements in products, processes and organizations.
View all posts by Lorenzo Mangubat >

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application