NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Machine Learning > Machine Learning for Home Improvement: Predicting House Price After Renovation

Machine Learning for Home Improvement: Predicting House Price After Renovation

Daniel Nie, Tony Pennoyer and Karl Lundquist
Posted on Jan 11, 2022

Extracting new value from the old Ames housing dataset

Motivation

Data Science in the Real Estate sector has matured to a point of saturation as most real estate companies utilize a data-driven approach to pricing and investment decision-making. Recently, Zillow has even decided to decrease dependence on data science and discontinued their machine-learning assisted business model. Our challenge was to look at the classic Ames Iowa dataset from a new angle and come up with a value proposition beyond just predicting the price of a house.

We decided to focus on real-world home improvement & renovations. Our final deliverable offers much more than an estimated price for a house or an app with a square-footage slider showing price change per additional square foot (sf). In practice, homeowners wonโ€™t expand their house by a few sf to get a higher valuation. Instead, they would remodel the kitchen or garage or maybe finish the basement into livable space. Our final product is an online tool that allows the user to select a house in Ames and see the effect of specific home improvement projects on house price.

With this tool, real estate companies can offer additional pricing information for clients looking to sell, and make suggestions to remodel parts of the house in order to increase listing price. Remodeling contractors or even home-supply retailers can utilize the tool for marketing purposes, by showing customers the increased house value in relation to how much is charged for the renovation.

Exploring Ames Iowa Houses Data

Ames is a small city in Iowa with a population of about 65,000 and is the college town of Iowa State University. The Ames housing dataset consists of 2578 house records and includes sale price and individual house attributes. The image below maps the houses from the dataset (an interactive map can be found on the app).

From figure 1 we can see that houses near the center of town are priced lower than areas in the far northwest, west, and just south of Iowa State University. Instead of using the 27 individual neighborhoods to explore the data, we decided to separate the city as per sectors defined by the cityโ€™s tourism bureau (figure 2 below).

With the city separated into the 6 sectors, we observe marked differences in the house prices in each sector. The northwest is the most expensive, and southeast, north, and downtown areas are the cheapest (figure 3).

Figure 3: Stacked bar charts of the type of house for each sector, with house prices overlaid

FIgure 4 below is a scatter plot of the years each house was built. Lower prices in the north and downtown areas are due to the age of the house. In the north and downtown areas there are very few houses built after 1980 and 1960, respectively.

 

Figure 4: Stacked bar charts of the type of house for each sector, with house "year built" overlaid

The lower prices in the southeast (SE) sector of Ames is not due to house age but to the type of houses in the area. We see that SE has a larger proportion of houses that are of Split Foyer and Duplex. These houses are shown to have lower price per sf than other house types, especially as the total sf increases (figure 5, right)

Figure 5: Price per SF versus house size for each sector (left) and for type of house (right)

Equipped with an idea of the general market, including geographical and housing type price trends, in the next section we explore individual house attributes and conduct feature engineering.

Feature Selection & Engineering Data

With over 81 features, the Ames Iowa dataset has a lot of information on house features, what condition those features are in, and how big parts of the house are. Finding our final features took a lot of trial and error to see what worked and some caution to avoid multicollinearity. Our starting point was discussing which features were important but also realistic in a home renovation model. Our final list of features were being used in two ways: one, for creating machine learning models that predict how much value a renovation will add, and two, as interactive features on our app interface.

Feature Manipulation

Some features like basement condition, garage quality, and fireplaces were lacking observations in their categories. In order to keep our predictions accurate, we simplified categories that didnโ€™t have enough information. Below you can see that for basement conditions, we moved the โ€œPoorโ€ and โ€œExcellentโ€ categories into the โ€œFairโ€ and โ€œGoodโ€ categories, respectively. We repeated this process for several other features. 

Feature Engineering

From our initial saturated model we found a high variance inflation factor among many features. This led us to combine key features that had a large effect on predicting house price. Below is a list of the features we created:

Total Square Footage = sum of first floor + second floor + finished basement square feet

Total Porch Area  = sum of all porch & deck square feet

Total Basement Bathrooms = sum of half & full bathrooms in basement

Total Above Ground Bathrooms =  sum of half & full bathrooms above ground

Feature Selection

To begin sifting through our choices, we outputted a feature importance graph from a gradient boost model.

 

Figure 6: Feature Importances from the Gradient Boost model

This gave us a solid starting point to pick our final features. After frequent A/B model testing with different features included, we settled on 16 features to use in our ML model. The next section goes into more depth on what kinds of machine learning methods we used and why. 

Hyperparameter Tuning & Data Model Selection

After finalizing the feature selection we needed to choose a model. The types of models we discussed in the bootcamp that could be applied to this sort of problem are linear regression models, tree-based models like random forest and gradient boosting, and, finally, support vector machines. 

With the final dataset we tuned and explored the performance of each of these models. We started with linear regression, and for this, we performed one hot encoding for all the categorical variables. In addition, we trained the model on the log of the sale price to remove the right skew and limit the fanning of the continuous independent variables with respect to the dependent variable. As an example, the elimination of this fanning can be seen with respect to gross living area (Figure 7, bottom right).

 

Image

 

Image

Figure 7. Effect of transforming the sale price to remove right skew (left) and eliminate fanning (right).

Once we had a linear model, we also explored the effect of penalization. For some data sets, standard linear models can overfit the dataset and actually result in a significantly lower R2 value for the test dataset. However, in our hands we saw that depending on exactly how the data was split, the test and train performance vs. lambda varied drastically.

For certain splits, we observed a maximum in the test dataset, and in others we observed that the test dataset performed better than the train (Fig. 9, top left). In order to get around this drastic variability issue, we performed 100 random splits and iterated over the lambda values for each. Then we averaged the scores for each lambda value of all 100 splits. However, even with this process, we didnโ€™t observe any beneficial value of penalization for either Lasso or Ridge regression in that there was no increase in test R2 for any non-zero value of lambda (Fig. 9, right).

This led us to the conclusion that a standard unpenalized linear model would be our best choice for the linear model category. To evaluate the performance of the unpenalized linear model, we performed 100 random splits and plotted the distribution of test scores (Figure 8, bottom left). 

 

Figure 8: Evaluating penalized linear models to prevent over-fitting.

The next model we looked at was random forest regression. For random forest and all the other tree-based models we label encoded our categorical variables. We performed a thorough grid search with four-fold cross validation, and we identified the best parameters to be max_depth 15, min_samples_leaf 2, min_samples_split 3, and n_estimators 80. However, if we carry out the procedure described above, splitting the data and scoring 100 times, we observe that the distributions generated for tuned and default parameters are not significantly different.

To conclude this, we calculate the p-value using the two-sample t-test between these two distributions. By Occam's razor we chose to use the simplest of these two models, which is the default parameters for random forest. 

 

Figure 9: Evaluation of random forest regression with tuned hyperparameters and default parameters. No significant difference was detected for the tuned model.

We then performed a similar procedure on several different gradient boosting algorithms. The algorithms we tested included the base gradient boosting regressor in scikit-learn, XGBoost, CatBoost, and LightGBM. We again performed four-fold cross validation with grid search, and we tuned for learning_rate, max_step, subsample, and n_estimators. For scikit-learn and XGBoost we saw significant differences between our tuned parameters and the default parameters.

So our final models for these packages used the tuned parameters. For CatBoost and LightGBM there was no significant difference, so the default parameters for these packages were used. Aside: The Catboost website boasts that you get great performance without tuning your parameters, and indeed we actually did see that we didnโ€™t need to tune this model in order to get great performance.

 

data

Figure 10: Evaluation of four gradient boosting models.

We also tuned a support vector machine model using the scikit-learn support vector regressor with a RBF (radial basis function) kernel. We were able to obtain a significant increase in performance with our tuned parameters over the defaults. However, despite our efforts, in the end SVM was still our worst performing model.

 

data

Figure 11: Evaluation of support vector regressor model with and without tuned parameters.

When we compare all of these models, we see that there is a significant overlap in the performance of these top three models (Figure 12, left), and a comparison of the pairwise p-values between these distributions indicate no significant difference between them (Figure 12, bottom left). Among these, scikit-learn and XGBoost both required parameter tuning, whereas CatBoost did not. Therefore, in the interest of using the simplest model, we chose to use CatBoost as our final model.

To verify that CatBoost is indeed significantly better than the four worst models, we also calculated the p-values between Catboost and those models (Figure 12, bottom right). Since each of these p-values were significant, CatBoost was used for all modeling going forward.

 

data

Figure 12: Comparison of the best models from each category.

Home-improvement in Ames: Using the App

The tool seeks to provide accurate estimates on home renovations. The main areas that brought the highest returns were finishing unfinished square footage, kitchen renovations and bathroom additions. The return seen is dependent upon the style, condition and location of the home. Inside the app, once an address is selected all relevant house details are updated and renovation options are based on the characteristics of the home. Seeing the return one would make, or lack thereof, would help to inform one in better decision making. Restrictions were put in place to account for the availability of changes that could be made.

As we continue to expand on this project, changes will be implemented to adjust for the limitations of the data.

data

Conclusions, Limitations & Next steps

Everyday we are faced with making practical decisions unequipped with the necessary foresight to ensure optimal outcomes. What machine learning offers to us is the ability to make better decisions, ones that are proactive rather than reactive. Contractors, real estate agents, and homeowners all share a common interest, seeing a return on their investments. 

The data was restricted to Iowa; adding additional cities could help to explore patterns that are shared across them as well as within them. As we discovered, older, less desirable homes existed near the city center, while newer, more favorable houses existed further out in the surrounding area. Location as well as style of home greatly affected the change in returns seen on a given home. More observations would need to be taken into account to expand the applicationโ€™s current offering.

The skills I demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

About Authors

Daniel Nie

Data Scientist with background experience in both Healthcare Administration and Finance. A versatile thinker that enjoys deep data exploration and generating business value with machine learning in both Python and R
View all posts by Daniel Nie >

Tony Pennoyer

Data Scientist who brings a unique creative and analytical approach to the table. Interested in data story telling and creating actionable insights through data analysis.
View all posts by Tony Pennoyer >

Karl Lundquist

Karl is a data scientist with nine years of performing technical data analysis and research design in an academic setting. He is highly skilled at communicating complex analytic insights to a general audience. He is currently working to...
View all posts by Karl Lundquist >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Pandemic Effects on the Ames Housing Market and Lifestyle
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application