NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Python > MOOC Data Insights through Scraping edX

MOOC Data Insights through Scraping edX

Patrick Masi-Phelps
Posted on Aug 28, 2017
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Introduction

This data analysis looks into one corner of the online education market - but first, let's talk about higher education more broadly.

The cost of a traditional 4-year undergraduate degree has risen dramatically over recent decades. The College Board reports the total cost (including tuition, fees, room and board) of a 4-year private non-profit education rose from $16,760 in 1976 to $45,370 in 2016. The cost of a public 4-year education rose from $8,160 to $20,090 across the same years. Allan Cartter was the first (that I could find) to suggest the existence of a higher education bubble when he was Chancellor of NYU in 1964, predicting higher education in the U.S. was churning out 30-50% more grads than the number of jobs requiring degrees. Even more have echoed his calls in recent years.

Online courses, popularly known as Massive Open Online Courses, or MOOCs, are the latest means through which institutions are delivering higher educational services.

MOOC Data Insights through Scraping edX

Some argue that MOOCs may one day replace traditional brick-and-mortar universities. Others see them as complements to university; or an inherently inefficient model as evidenced by low retention rates. Regardless, the popularity of MOOCs is growing, and it's important for educators, students, and financiers (shout out to Navient, my student loan servicer) to understand the market for online courses.

According to Class Central, a search engine for online courses, Coursera leads all MOOC providers with 23 million users as of December 2016, followed by edX (10 million), XuetangX (6 million), Future Learn (5.3 million), and Udemy (4 million).

The major MOOC providers offer some "original content", but their main business is providing the online venue through which their institutional partners can push their own courses out to students.

Objective

In this analysis, I lump the institutional partners into three categories:

  1. Public and private non-profit universities (e.g. Harvard, MIT, Delft University of Technology, University of Michigan)
  2. Private for-profit companies (e.g. Microsoft, New York Institute of Finance, Tenaris University)
  3. Non-profit companies and other organizations (e.g. Amnesty International, The International Monetary Fund, The World Bank Group)

Purpose

This project aims to extract high-level supply-side insights into the online course market, including the supply of courses offered in different subjects, the diversity of course offerings, and the characteristics of a typical course.

Web Scraping Methods

I used Selenium to scrape the edX website for information on all courses offered (in English), then conducted exploratory data analysis in python, primarily using the numpy and pandas packages. Check out my Github for the Selenium code. I won't bore you with the details.

Data

edX offers 1257 courses in English. For each course, I pulled the following information:

  • Title
  • Description
  • Subject (e.g. Math, Literature, Business and Management)
  • Recommended course length (typically measured in weeks)
  • Commitment (typically measured in hours per week)
  • Prerequisites
  • Price (a vast majority of courses are free)
  • Level (introductory, intermediate, advanced)

Data Analysis

Just as Caltech specializes in math and sciences and College of the Atlantic solely offers degrees in human ecology (link: ), edX favors Computer Science and Business and Management, which account for an impressive 262 and 177, respectively, of edX's 1257 online courses. Engineering, Economics and Finance, and Biology and Life Sciences round out the top 5. On the other end, edX only offers 5 Food and Nutrition courses and 2 Ethics courses.

Number of Courses Offered

The below graph shows the number of courses offered in each subject by the type of sponsoring institution (green = public and private non-profit universities, red = private for-profit companies, blue = non-profit companies and other organizations).

MOOC Data Insights through Scraping edX

"Traditional" public and private non-profit universities touch all areas (read: subjects) of the online education space. This makes sense. These schools already offer courses across an array of subjects to the students who pay to sit in their physical classrooms, so the barriers to entry are low. Set up a camera in the back of the classroom, upload the materials to edX, and you're in (I'm overgeneralizing).

Private companies and other non-profit organizations do not typically offer brick-and-mortar educational services, so entering the online course market requires more effort, more investment. These institutions need to find instructors, develop curriculums, and put together materials before deciding to offer a course in astronomy, or literature. Higher barriers to entry mean there's more on the line if the online course fails to attract students.

This is perhaps why we see private for-profit companies and other non-profit organizations only in the more established, proven online education market segments like computer science, business, finance, and engineering. This leaves the newer, smaller segments, primarily in the humanities, to the public and private non-profit universities.

Now on to some features of the courses themselves. The total length of a course (measured as the course length (in weeks) multiplied by the weekly commitment (hours per week)) can tell us how strenuous or difficult it is. We can also look at the distribution of course lengths as a proxy for product "diversity" across different subjects.

Distribution of Courses in Each Subject

The below violin plot (Social Sciences subjects only) shows the distribution of courses in each subject by the number of total hours for each course. Subjects with more course offerings (toward the left) tend to have more elongated distributions of course lengths than subjects with fewer offerings (toward the right). One could argue that saturated markets like Business and Management encourage product diversity and specialization - institutions are willing to take risks and deviate from the typical course length seen in a traditional university setting.

Subjects with fewer course offerings (e.g. Ethics) are still dominated by the traditional universities with little incentive to stray from their proven model. This course length distribution trend generally exists among math/science and humanities subjects too - email me if you'd like to see those violin plots.

The distribution of course lengths differs by subject - how about by institution type?

Statistical Data Analysis

A one-way ANOVA test can tell us whether average course length varies among the three groups of institutional offerors (public/private non-profit universities, private for-profit companies, and non-profit companies/other organizations).

The distributions of course lengths by institution type are skewed right. A log transformation gives us more "Gaussian-like" distributions, and helps us to better satisfy the equal variance assumption required in order to produce meaningful ANOVA test results.

Institution Type Number of Courses Offered Course Length Average (hrs) Course Length Variance log(Course Length) Average log(Course Length) Variance
Public or Non-Profit University 997 40.4 1176.7 3.38 .70
Private Company 126 15.9 128.8 2.53 .54
Non-Profit Company or Other Organization 70 33.6 5132.7 2.82 1.11

Distribution of course lengths - pre-log transformation

Distribution of course hours - post-log transformation

Null Hypothesis: edX courses offered by 1) Public/Non-Profit Universities, 2) Private Companies, and 3) Non-Profit Companies/Other Organizations have the same average length.

Alternative Hypothesis: one or more of these groups has a different mean course length than the others.

One-way ANOVA test results:
F-statistic: 66.11
P-value: 5.93 e-28

Conclusion: reject the null hypothesis in favor of the alternative. The three institution types do not offer the same average course length.

Course length is just one feature of a MOOC, yet I argue it is one of the most important proxies we can analyze to gauge product diversity. Traditional universities generally offer courses of similar lengths. Deviation is costly. Other providers can be more flexible in their approach.

The higher education bubble may soon burst. Educators and students should understand their options and the relevant stakeholders.

About Author

Patrick Masi-Phelps

Patrick graduated from Wesleyan University with a bachelor's degree in Mathematics and Economics. After graduation, he worked in regulatory consulting for two years, primarily with traditional buyout private equity and quantitative trading firms. Patrick enrolled in NYCDSA to...
View all posts by Patrick Masi-Phelps >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Pandemic Effects on the Ames Housing Market and Lifestyle
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application