NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Machine Learning > Predicting Housing Prices with Machine Learning Models

Predicting Housing Prices with Machine Learning Models

Ryan Kniewel and Marcus Choi
Posted on Apr 6, 2021
Predicting Housing Prices with Machine Learning ModelsPhoto by Michael Tuszynski on Unsplash
Code available on GitHub
Connect with us on LinkedIn: Marcus Choi, Ryan Kniewel

The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Overview of Housing Prices in Ames, IA

Machine learning modeling to predict housing prices in Ames, Iowa utilizing advanced regression techniques

Project Description

  • Ask a home buyer to describe their dream house, and they probably won't begin with the height of the basement ceiling or the proximity to an east-west railroad. But this playground competition's dataset proves that much more influences price negotiations than the number of bedrooms or a white-picket fence.
  • With 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa, this competition challenges you to predict the final price of each home.

Acknowledgments

  • The Ames Housing dataset was compiled by Dean De Cock for use in data science education. It's an incredible alternative for data scientists looking for a modernized and expanded version of the often-cited Boston Housing dataset.

Dataset

  • We utilized a a database from 2006-2010 including 1460 observations, each representing a home and 79 features, describing different areas of the house such as the interior and exterior, parking lot, housing surroundings, etc. 

Objectives & Goals

  • For the purpose of this project, we acted as a fictional data science company focused on data mining and consulting. Our goal was to build a unique housing pricing prediction model in order to predict the fair market value assessment for homes in Ames, Iowa. Additionally, we wanted to identify which features had the largest impact on the predictions of the home sale price in order to understand on what areas of the home would increase or decrease the value of the home. 

Exploratory Housing Prices Data Analysis

Extensive graphical exploratory data analysis (EDA) was carried out to investigate the relationship between the explanatory variables (features) and the response variable, sale price. The relationship between Sale Price and Year Built is shown in Figure 1.

Predicting Housing Prices with Machine Learning Models

Figure 1. Representative EDA visualizing relationship between house Sale Price and Year Built

Furthermore, numerical EDA demonstrated the correlation (Spearman's) between the variables (Figure 2). Features such as Overall Quality and Above Ground Living Area were highly correlated with Sale Price, in contrast with the Month or Year Sold, which showed near zero correlation with Sale Price.

Predicting Housing Prices with Machine Learning Models

Figure 2. Correlation (Spearmanโ€™s) between selected features

Housing Prices Data Pre-Processing

  • Once we did some EDA and became familiar with the features in our dataset, we then looked at the missing values in our dataset. We had at least 36 features with missing values and they were either imputed with the mean or mode of their respective columns. One thing to note was that imputation in both the training and test datasets used fill values only from the training data set to avoid data leakage.
  • Next, we made sure to use the encoding function on ordinal values so that the model would be compatible and understand the different ordered values. There were 12 features that were suitable for encoding to ordinal.
  • Then, we also made sure to either dummify or label encode for categorial features. This was an important step because we wanted to make sure we were using the correct data set for the correct models. We had used the linear models for the dataset that was dummified and tree based models for the dataset that was label encoded.
  • Lastly, we did some feature transformation, for example the log Sale Price to generate a more normal distribution. Then, we used these new features for the the linear models as it met the assumptions of regression models and ultimately improved its performance.
Predicting Housing Prices with Machine Learning Models

Figure 3. Summary of dataset pre-processing

Feature Engineering

  • From what we observed from the EDA, we created 5 different new features as this would reduce dimensionality and to better predict our target variable.
    • Total Outdoor SF: 5 features into 1
    • Total Baths: 4 features into 1
    • House Age: YearSold - YearBuilt
    • Remodel/Addition Age: YearSold - YearRemodAdd
    • Garage Age: YearSold - GarageYearBuilt
  • To simplify the large number of features, we removed features with correlation values less than 0.3 compared with Sale Price and features with >90% having the same value. For example, the feature Electrical System had values of either circuit breakers or fuses. The vast majority of the houses had modern circuit breakers, and thus this feature was removed.
    • Correlation < 0.3 with Sale Price
    • Features with > 90% of the same level (Electrical System)
    • Redundant features (GarageArea, GarageCond)
  • Lastly, we also removed features with trends that were highly independent of the Sale Price. For example, features such as month sold and year sold.
    • Features with trends that were independent of Sale Price (MonthSold and YearSold)

Machine Learning Models to Analyze Housing Prices Data

  • We explored two types of models: linear regression models and ensemble tree-based regression models.
  • For linear models we took the log value of our target variable Sale Price and had dummified the predictors as mentioned previously in the pre-processing section. Then we used this data on models such as multiple linear regression and regularization models such as ridge, lasso, and elastic-net.
  • For tree-based models we encoded the features into a numerical format rather than dummifying the variables. Then, we used this dataset for models such as random forest, gradient boosting, and XGBoost.

Linear Regression Models

  • Multiple Linear Regression
  • Regularization

Ensemble Models

  • Random Forest
  • Gradient Boosting
  • XGBoost

Model Performance

  • We fit each of the models and then compared the train and test set errors in to order measure the fit and tuned hyperparameters as needed. Then, we evaluated the performance between models using the metric root mean squared error.
Predicting Housing Prices with Machine Learning Models

Figure 4. Model performance RMSE values

Feature Importance

  • Below are the two feature importance graphs from our highest performing models. Although, they don't convey exact similarities in the order of the features, we saw that several features were important in both models such as Overall Quality, Above Ground Living Area, Garage Cars, Kitchen Quality, Fireplace Quality, and Central Air.
  • We also observed that the two engineered features Total Basement SF and Total Baths were both ranked top 10 in our best performing models. This was interesting to see because it confirmed the multicollinearity we found among the original features and the correlations between the combined variables and sale price.
Predicting Housing Prices with Machine Learning Models

Figure 5. Top ten important features for two best performing models, Gradient Boosting and XGBoost

Insights & Conclusions About Ames' Housing Prices

Our models predicted Ames' home prices with an average error of ~$25,000 to $32,000.

Predicting Housing Prices with Machine Learning Models

Figure 6. Comparison of actual and predicted house prices with respect to age for XGBoost model. Pink histogram bars represent the count of homes by year in the training data.

Model fidelity comparisons revealed a distinct dependence on age, which was directly related to the number of houses used to train the model for a given year.

Future Work on Housing Prices

Predicting Housing Prices with Machine Learning Models

About Authors

Ryan Kniewel

I have a diverse background in biotechnology and synthetic biology with over 20 years of experience engineering microorganisms using tools from biochemistry, molecular biology, genetics and bioinformatics. I am expanding my knowledge base to address a new range...
View all posts by Ryan Kniewel >

Marcus Choi

Marcus graduated from Rutgers University with a bachelor's degree in Kinesiology. Upon graduation, he worked in oncology clinical research in data management, which sparked his passion for utilizing data in order to gain valuable insights to ultimately make...
View all posts by Marcus Choi >

Related Articles

Capstone
Predicting the Unpredictable: Revolutionizing E-commerce Delivery with Machine Learning
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
R Shiny
Forecasting NY State Tax Credits: R Shiny App for Businesses
Machine Learning
Pandemic Effects on the Ames Housing Market and Lifestyle

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application