NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R Shiny > DATA STUDY ON RETAIL SALES AND CUSTOMER SEGMENTATION

DATA STUDY ON RETAIL SALES AND CUSTOMER SEGMENTATION

Guillermo Ruiz
Posted on Apr 9, 2021
The skills I demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Introduction

Data science presents great opportunities for individual businesses to increase their profits. Among them, customer data is becoming extremely appealing to companies. In particular, customer segmentation allows companies to target their customers in a more customized way. 

This is an exploratory data visualization project that aims to unravel gain opportunities for a chain of supermarkets. The Company was losing revenue and in need of a strategic review. The dataset includes 1,000 observations.

Exploratory data visualization

The results from the customer segmentation analysis are displayed in a shiny app that the user can navigate. The analysis reveals some important insights that can inform the companyโ€™s marketing strategy.

Below is a graph that visualizes the current state of the Companyโ€™s sales in its three locations.

Figure 1: Total sales per city

DATA STUDY ON RETAIL SALES AND CUSTOMER SEGMENTATION

The first tab, "Location", is shown in Figure 1. As we can see, there are differences in sales between the three supermarkets. The branch located in Naypyitaw is the most successful. However, these differences are not big and suggest that location may not be one of the variables having an important impact on the Companyยดs performance.

Figure 2: Average sales per weekday and hour

Sales are distributed over weekdays and hours as expected. We can see there are more on Mondays and Fridays than on the other days of the week.. Time of day also follows a pattern, as sales are concentrated between 12:00am and 15:00pm.

Figure 3: Total sales per type of product

DATA STUDY ON RETAIL SALES AND CUSTOMER SEGMENTATION

The distribution of sales by type of product shows that there are not huge differences in total sales within them. However, there are minor ones. "Food and beverages," in particular,  stands as the biggest contributor to total sales, while "Health and beauty" is the least important one.

Figure 4: Total sales per gender

DATA STUDY ON RETAIL SALES AND CUSTOMER SEGMENTATION

Overall, women represent a slightly bigger proportion of total sales than men. We can try to discern if this is the case for every type of product or if there are differences between them. 

Figure 5: Total sales per type of product and gender

As shown in Figure 5, women buy more than men across most product types. "Food and beverages" is a category in which women clearly spend more in comparison to men. Interestingly, the biggest gap in consumption happens in "Health and beauty", where men account for  the biggest part of total sales. Both genders are close to  even for "Electronic accessories" sales. These results suggest that targeting men and women for different specific types of products could increase sales in particular categories.

Figure 6: Correlation between total sales and customer rating

Customer rating is a measure of a customerยดs satisfaction summarized in a single score. The Figure above shows a very weak correlation between sales and customer ratings. Targeting highly satisfied customers can boost sales outcomes. A way to do this is by improving the Companyยดs membership program, as we proceed to analyze below.

Figure 7: Total sales by membership

As shown in Figure 7, the differences in sales between members and non-members is very small; members spend on average 327.79 while non-members spend 318.12 . We can take a deeper look to provide a more nuanced analysis.

Figure 8: Membership by gender

As pointed out before, women represent a slightly higher amount of sales than men. Therefore, women could be a better target for the membership program, especially given their larger spend on  the "Food and beverages" category. We already see a higher rate of participation among women in the membership program, 52%, that could be increased.

Figure 9: Total sales per type of product and membership

In Figure 9, we break down total sales by type of product for members and non-members. Participants in the membership program spend more on products that are bought in a more recurrent way. The biggest positive difference is in "Food and beverages," and the biggest negative difference is in "Electronic accessories." Figure 7 showed only slightly higher total sales by members due to the negative correlation with total sales in "Electronic accessories," which is probably not causal.

Figure 10: Membership by customer rating

As we can see in Figure 10, customer satisfaction does not seem to affect participation. This should be also considered in the light of the weak correlation between customer rating and total sales shown in Figure 6, which together suggests there is a pool of satisfied customers that could be targeted.

Conclusion

We provide evidence to support possible strategic changes for a loss making supermarket. These changes imply targeting specific segments of customers (men and women, by type of product, satisfied customers, members of the loyalty program) in a customized way.

The Shiny app discussed in this blog post together with the relevant code and data can be found here.

About Author

Guillermo Ruiz

Data Science Professional and Economist with a demonstrated history of data analysis and machine learning modeling with a focus on storytelling with data. Passionate about helping companies to gather and analyze data to make more informed decisions to...
View all posts by Guillermo Ruiz >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Data Analysis
Car Sales Report R Shiny App
Data Analysis
Injury Analysis of Soccer Players with Python
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
R Shiny
Forecasting NY State Tax Credits: R Shiny App for Businesses

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application