NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Python > SkinSmart: A Recommendation System for Skincare Products

SkinSmart: A Recommendation System for Skincare Products

Yvonne Lau
Posted on Mar 8, 2017

1. Motivation

As a skincare products enthusiast, I often found myself spending quite some time sifting through reviews to find the ideal skincare product that suited my needs. While most skincare websites prominently display average ratings and reviews for products, the overall set of criteria to search for skincare products is not very robust. For instance, a search for a "orange-scented serum that is both cheap and moisturizing" can often lead to an exorbitant amount of hours of tedious reading through several non-informative reviews before a match is found.

To solve this issue, I decided to take advantage of the vast amount of text-based review data and NLP (Natural Language Processing) techniques to build a basic recommendation system for Skincare Products. My recommendation system uses TF-IDF to process review's text data and recommends products with the top 5 highest cosine similarity score. The website of choice to obtain the dataset for this project was totalbeauty.com, more specifically the section pertaining reviews for Face Products.

The dataset for this project was collected using Scrapy in Python. Data processing and Shiny App was written in R. You can visit my application here. All code is available on Github.

2. Data Collection

The hierarchy of totalbeauty.com is summarized in the image below. To build a recommendation system based on review contents from different products, I extracted information of products and reviews by crawling 2 levels down.

crawl

About 50,000 rows of data from 6000 skincare products were scraped from totalbeauty.com. The graph below highlights the information I collected for each product:

review

Below is a snapshot of the scraping "spider" Python code used to collect the information described above.

3. NLP + Recommendation System

recommend

My recommendation system's algorithm works as follows:

  1. Read user's input (Category of products and tags of interest)
  2. Compute and sort cosine similarity between products and the user's tags of interest.
  3. Return Top 5 skincare products with highest cosine similarity score.

A. TF-IDF

To create the tags of interest ("query"), text-based reviews were parsed using R by creating a TF-IDF measure for each word within a review. TF-IDF is a NLP technique which stands for "Term Frequency - Inverse Document Frequency". In the context of this recommendation system, it essentially measures how important a word is to a given skincare product compared to a collection of skincare products. Below, you will find a more detailed explanation along with the code implementation in R.

TF-IDF

A.1 TF (Term Frequency)

Term Frequency (TF) measures the number of times a word occurs within a collection of reviews for a particular product. For instance, if a review says "Good serum", then the term frequency for "good" is 1, and the term frequency for "serum" is 1. For my recommendation system, I took use of the normalized version of TF, where the overall term frequency for each word is divided by the total number of words within a single review Corpus.

A.2 IDF (Inverse Document Frequency)

The main purpose of doing a search for skincare products with tags of interest is to find out relevant products matching the query. In the previous step(TF), all terms are considered equally important. This approach leads to a fundamental problem: certain terms that occur too frequently (i.e love, skin) have little sway in determining the relevance of a product, but are given too much importance under TF. We need a way to weigh down the effects of too frequently occurring terms across different Products, and weigh up the effects of less frequently occurring terms. That is where IDF comes into place.

The Inverse Document Frequency(IDF) is a logarithmic measurement of how much information a word provides, that is, whether the term is common or rare across different skincare products' reviews.  Note that as df approaches N(i.e. a word is mentioned more and more across different products),  the argument approaches 1, and the overall IDF gets closer to zero.

A.3 TF-IDF

When TF and IDF are multiplied, we obtain TF-IDF, which is a composite weight given to each word in each corpus of reviews for a given product. The full R code used to compute TF-IDF can be found here:

B. Cosine Similarity

With TF-IDF measurements in place, products are recommended according to a cosine similarity score with the query. Each product and the query of tags is viewed as a vector in an N-dimensional vector space, where each term represents its own axis. Using the formula below, the recommendation system computes the cosine from the angle formed between a product and the query of tags. The closer to 1, the more similar two vectors(products) are.

cossim

The code below pertains to the actual implementation of the cosine similarity computation and recommendation which is written in R.

Below is a sample output for a query in my Shiny App which searches for an "Anti-Aging Product" with tags "orange", "sensitive", "skin". The top 5 products with highest cosine similarity are returned in this case.

recommendation

4. Further Improvements

There are several improvements to make this recommendation system more sophisticated, such as:

  • Processing misspellings so that words like "clean" and "cleaan" can be accounted as the same word
  • Performing sentiment analysis to distinguish positive from negative reviews
  • Expanding the available dataset by scrapping other skincare review websites
  • Allowing users to assign weights to tags

About Author

Yvonne Lau

Yvonne Lau is a recent Yale University graduate with a B.A. degree in Economics and Mathematics. Hailing from Rio de Janeiro, Brazil, she became interested in data science after serving as a Data Analyst for a nonprofit organization,...
View all posts by Yvonne Lau >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Pandemic Effects on the Ames Housing Market and Lifestyle
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Google February 15, 2021
Google Sites of interest we have a link to.
Google January 12, 2021
Google Usually posts some quite exciting stuff like this. If you are new to this site.
Google October 26, 2019
Google Check below, are some totally unrelated web-sites to ours, nevertheless, they are most trustworthy sources that we use.
Google October 14, 2019
Google We like to honor many other net web pages on the web, even when they arenย’t linked to us, by linking to them. Beneath are some webpages really worth checking out.
Derma Viva May 20, 2017
If some one desires expert view about blogging after that i propose him/her to go to see this blog, Keep up the nice job.
Tony May 18, 2017
I the efforts you have put in this, thanks for all the great posts.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application